Networks of neuroinjury semantic predications to identify biomarkers for mild traumatic brain injury

Journal of Biomedical Semantics - Tập 6 - Trang 1-14 - 2015
Michael J Cairelli1, Marcelo Fiszman1, Han Zhang2, Thomas C Rindflesch1
1National Institutes of Health, National Library of Medicine, Bethesda, USA
2Department of Medical Informatics, China Medical University, Shenyang, China

Tóm tắt

Mild traumatic brain injury (mTBI) has high prevalence in the military, among athletes, and in the general population worldwide (largely due to falls). Consequences can include a range of neuropsychological disorders. Unfortunately, such neural injury often goes undiagnosed due to the difficulty in identifying symptoms, so the discovery of an effective biomarker would greatly assist diagnosis; however, no single biomarker has been identified. We identify several body substances as potential components of a panel of biomarkers to support the diagnosis of mild traumatic brain injury. Our approach to diagnostic biomarker discovery combines ideas and techniques from systems medicine, natural language processing, and graph theory. We create a molecular interaction network that represents neural injury and is composed of relationships automatically extracted from the literature. We retrieve citations related to neurological injury and extract relationships (semantic predications) that contain potential biomarkers. After linking all relationships together to create a network representing neural injury, we filter the network by relationship frequency and concept connectivity to reduce the set to a manageable size of higher interest substances. 99,437 relevant citations yielded 26,441 unique relations. 18,085 of these contained a potential biomarker as subject or object with a total of 6246 unique concepts. After filtering by graph metrics, the set was reduced to 1021 relationships with 49 unique concepts, including 17 potential biomarkers. We created a network of relationships containing substances derived from 99,437 citations and filtered using graph metrics to provide a set of 17 potential biomarkers. We discuss the interaction of several of these (glutamate, glucose, and lactate) as the basis for more effective diagnosis than is currently possible. This method provides an opportunity to focus the effort of wet bench research on those substances with the highest potential as biomarkers for mTBI.

Tài liệu tham khảo

West TD, Marsh JO, Schwarz JJH, Bacchus J, Fisher A, Jumper JP, et al. Rebuilding the trust: report on rehabilitative care and administrative processes at Walter Reed Army Medical Center and National Naval Medical Center. Alexandria, VA; 2007.

Hart J, Kraut MA, Womack KB, Strain J, Didehbani N, Bartz E, et al. Neuroimaging of cognitive dysfunction and depression in aging retired national football league players: a cross-sectional study. JAMA Neurol. 2013;70(3):1–10.

Pellman EJ, Viano DC, National Football League’s Committee on Mild Traumatic Brain Injury. Concussion in professional football: summary of the research conducted by the National Football League’s Committee on Mild Traumatic Brain Injury. Neurosurg Focus. 2006;21(4):E12.

Guskiewicz KM, McCrea M, Marshall SW, Cantu RC, Randolph C, Barr W, et al. Cumulative effects associated with recurrent concussion in collegiate football players: The NCAA Concussion Study. JAMA. 2003;290(19):2549–55.

Wang K, Lee I, Carlson G, Hood L, Galas D. Systems biology and the discovery of diagnostic biomarkers. Dis Markers. 2010;28(4):199–207.

Goodwin JC, Cohen T, Rindflesch TC. Discovery by scent: Closed literature-based discovery system based on the information foraging theory. Presented at the IEEE First International Workshop on the role of Semantic Web in Literature-Based Discovery: 2012, Philadelphia.

Ozgür A, Xiang Z, Radev DR, He Y. Literature-based discovery of IFN-gamma and vaccine-mediated gene interaction networks. J Biomed Biotechnol. 2010;2010:426479.

Cytoscape: Network data integration, analysis, and visualization in a box. www.cytoscape.org.

Bareyre FM, Saatman KE, Helfaer MA, Sinson G, Weisser JD, Brown AL, et al. Alterations in ionized and total blood magnesium after experimental traumatic brain injury: relationship to neurobehavioral outcome and neuroprotective efficacy of magnesium chloride. J Neurochem. 1999;73(1):271–80.