Neonatal hyperglycaemia and abnormal development of the pancreas

Isabelle Flechtner1
1Clinique des Maladies du Développement, Unité d'Endocrinologie, Diabétologie et Gynécologie Pédiatrique, Hôpital Necker-Enfants Malades, Paris, France

Tài liệu tham khảo

Von Mühlendahl, 1995, Long-term course of neonatal diabetes, N Engl J Med, 333, 704, 10.1056/NEJM199509143331105

Ferguson, 1970, Transient neonatal diabetes mellitus in sibs, Arch Dis Child, 45, 80, 10.1136/adc.45.239.80

Shield, 1995, Transient neonatal diabetes and later onset diabetes: a case of inherited insulin resistance, Arch Dis Child, 72, 56, 10.1136/adc.72.1.56

Metz, 2002, Neonatal Diabetes Mellitus: chromosomal analysis in transient and permanent cases, J Pediatr, 141, 483, 10.1067/mpd.2002.127089

Temple, 2000, Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes, Diabetes, 49, 1359, 10.2337/diabetes.49.8.1359

Shield, 2004, An assessment of pancreatic endocrine function and insulin sensitivity in patients with transient neonatal diabetes in remission, Arch Dis Child Fetal Neonatal Ed, 89, F341, 10.1136/adc.2003.030502

Marquis, 2000, HLA-DRB1 and DQB1 genotypes in patients with insulin-dependent neonatal diabetes mellitus. A study of 13 cases, Tissue Antigens, 56, 217, 10.1034/j.1399-0039.2000.560303.x

Temple, 1995, An imprinted gene(s) for diabetes?, Nat Genet., 9, 110, 10.1038/ng0295-110

Christian, 1999, Significance of genetic testing for paternal uniparental disomy of chromosome 6 in neonatal diabetes mellitus, J Pediatr, 134, 42, 10.1016/S0022-3476(99)70370-7

Cave, 2000, Refinement of the 6q chromosomal region implicated in transient neonatal diabetes, Diabetes, 49, 108, 10.2337/diabetes.49.1.108

Temple, 1996, Further evidence for an imprinted gene for neonatal diabetes localized to chromosome 6q22-23, Human Mol Genet, 5, 1117, 10.1093/hmg/5.8.1117

Gardner, 2000, An imprinted locus associated with transient neonatal diabetes mellitus, Hum Mol Genet, 9, 589, 10.1093/hmg/9.4.589

Ma, 2004, Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM, J Clin Invest, 114, 339, 10.1172/JCI200419876

Mackay, 2006, A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus, Hum Genet., 120, 262, 10.1007/s00439-006-0205-2

Bryan, 2005, Insulin secretagogues, sulfonylurea receptors and K(ATP) channels, Curr Pharm Des, 11, 2699, 10.2174/1381612054546879

Inagaki, 1996, A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels, Neuron, 16, 1011, 10.1016/S0896-6273(00)80124-5

Inagaki, 1995, Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor, Science, 270, 1166, 10.1126/science.270.5239.1166

Gopel, 2000, Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels, J Physiol, 528, 509, 10.1111/j.1469-7793.2000.00509.x

Gopel, 2000, Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets, J Physiol, 528, 497, 10.1111/j.1469-7793.2000.00497.x

Gribble, 2003, A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line, Diabetes, 52, 1147, 10.2337/diabetes.52.5.1147

Aguilar-Bryan, 1995, Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion, Science, 268, 423, 10.1126/science.7716547

Gloyn, 2004, Activating mutations in the gene encoding the ATP-sensitive potassium channel subunit Kir6.2 gene are associated and permanent neonatal diabetes, N Engl J Med, 350, 1838, 10.1056/NEJMoa032922

Winarto, 2001, Morphological changes in pancreatic islets of KATP channel-deficient mice: the involvement of KATP channels in the survival of insulin cells and the maintenance of islet architecture, Arch Histol Cytol, 64, 59, 10.1679/aohc.64.59

Miki, 2001, Roles of ATP-sensitive K+ channels in cell survival and differentiation in the endocrine pancreas, Diabetes, 50, S48, 10.2337/diabetes.50.2007.S48

Seino, 2004, Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice, J Physiol, 554, 295, 10.1113/jphysiol.2003.047175

Yamada, 2005, Neuroprotection by KATP channels, J Mol Cell Cardiol, 38, 945, 10.1016/j.yjmcc.2004.11.020

Yamada, 2002, ATP-sensitive K(+) channels in the brain: sensors of hypoxic conditions, News Physiol Sci, 17, 127

Miki, 2001, ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis, Nat Neurosci, 4, 507, 10.1038/87455

Deacon, 2006, Behavioral phenotyping of mice lacking the K ATP channel subunit Kir6.2, Physiol Behav, 87, 723, 10.1016/j.physbeh.2006.01.013

Gong, 2003, KATP channels depress force by reducing action potential amplitude in mouse EDL and soleus muscle, Am J Physiol Cell Physiol, 285, C1464, 10.1152/ajpcell.00278.2003

Zingman, 2002, Kir6.2 is required for adaptation to stress, Proc Natl Acad Sci U S A, 99, 13278, 10.1073/pnas.212315199

Quayle, 1997, ATP-sensitive and inwardly rectifying potassium channels in smooth muscle, Physiol Rev, 77, 1165, 10.1152/physrev.1997.77.4.1165

Koster, 2000, Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes, Cell, 100, 645, 10.1016/S0092-8674(00)80701-1

Gloyn, 2003, Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes, Diabetes, 52, 568, 10.2337/diabetes.52.2.568

Florez, 2004, Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region, Diabetes, 53, 1360, 10.2337/diabetes.53.5.1360

Tschritter, 2002, The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia, Diabetes, 51, 2854, 10.2337/diabetes.51.9.2854

Vaxillaire, 2004, Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients, Diabetes, 53, 2719, 10.2337/diabetes.53.10.2719

Massa, 2005, KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes, Hum Mutat, 25, 22, 10.1002/humu.20124

Gloyn, 2005, Relapsing diabetes can result from moderately activating mutations in KCNJ11, Hum Mol Genet, 14, 925, 10.1093/hmg/ddi086

Gloyn, 2004, Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11 Gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel, J Clin Endocrinol Metab, 89, 3932, 10.1210/jc.2004-0568

Proks, 2004, Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features, Proc Natl Acad Sci U S A, 101, 17539, 10.1073/pnas.0404756101

Antcliff, 2005, Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit, Embo J, 24, 229, 10.1038/sj.emboj.7600487

John, 2003, Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2, J Physiol, 552, 23, 10.1113/jphysiol.2003.048843

Ribalet, 2003, Molecular basis for Kir6.2 channel inhibition by adenine nucleotides, Biophys J, 84, 266, 10.1016/S0006-3495(03)74847-4

Tammaro, 2006, Functional effects of naturally occurring KCNJ11 mutations causing neonatal diabetes on cloned cardiac KATP channels, J Physiol, 571, 3, 10.1113/jphysiol.2005.099168

Gribble, 1998, Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels, Diabetes, 47, 1412, 10.2337/diabetes.47.9.1412

Babenko, 2006, Activating Mutations in ABCC8 gene in neonatal diabetes mellitus, N Engl J Med, 355, 456, 10.1056/NEJMoa055068

Stanik, 2007, Prevalence of permanent neonatal diabetes in Slovakia and successful replacement of insulin with sulfonylurea therapy in KCNJ11 and ABCC8 mutation carriers, J Clin Endocrinol Metab, 92, 1276, 10.1210/jc.2006-2490

Flanagan, 2007, Mutations in KATP channel genes cause transient neonatal diabetes and permanent diabetes in childhood and adulthood, Diabetes, 56, 1930, 10.2337/db07-0043

Vaxillaire, 2007, New ABCC8 mutations in relapsing neonatal diabetes and clinical features, Diabetes, 56, 1737, 10.2337/db06-1540

Vaulont, 2000, Glucose regulation of gene transcription, J Biol Chem, 275, 31555, 10.1074/jbc.R000016200

Stoffers, 1998, Insulin Promoter Factor-1 gene mutation linked to early onset type 2 diabetes mellitus directs expression of dominant negative isoprotein, J Clin Invest, 102, 232, 10.1172/JCI2242

Ashraf, 2005, Unusual case of neonatal diabetes mellitus due to congenital pancreas agenesis, Pediatric diabetes, 6, 239, 10.1111/j.1399-543X.2005.00114.x

Velho, 1998, Genetic, metabolic and clinical characteristics of maturity onset diabetes of the young, Eur J Endocrinol, 138, 233, 10.1530/eje.0.1380233

Peake, 1996, X-linked immune dysregulation, neonatal insulin dependent diabetes, and intractable diarrhoea, Arch Dis Child Fetal Neonatal Ed, 74, F195, 10.1136/fn.74.3.F195

Roberts, 1995, Neonatal diabetes mellitus associated with severe diarrhoea, hyperimmunoglobulin E syndrome, and absence of islets of Langerhans, Pediat Pathol Lab Med, 15, 477, 10.3109/15513819509026984

Satake, 1993, A Japanese family of X-linked auto-imune enteropathy with haemolytic anaemia and polyendocrinopathy, Eur J Pediat, 152, 313, 10.1007/BF01956741

Baud, 2001, Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation, New Eng J Med, 344, 1758, 10.1056/NEJM200106073442304

Bennett, 2001, The immune dysregulation, poly-endocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3, Nat Genet, 27, 20, 10.1038/83713

Brunkow, 2001, Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse, Nat Genet, 27, 68, 10.1038/83784

Wolcott, 1972, Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia, J Pediatr, 80, 292, 10.1016/S0022-3476(72)80596-1

Delepine, 2000, EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome, Nat Genet, 25, 406, 10.1038/78085

Harding, 2000, Perk is essential for translational regulation and cell survival during unfolded protein response, Mol Cell, 5, 897, 10.1016/S1097-2765(00)80330-5

Zhang, 2006, PERK EIF2AK3 control pancreatic beta cell differentiation and proliferation is required for postnatal glucose homeostasis, Cell Metabolism, 4, 491, 10.1016/j.cmet.2006.11.002

Harding, 2001, Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival, Mol Cell, 7, 1153, 10.1016/S1097-2765(01)00264-7

Christen, 1992, Distinct neurological syndrome in two brothers with hyperuricaemia, Lancet, 340, 1167, 10.1016/0140-6736(92)93202-X

Yorifuji, 1994, Hereditary pancreatic hypoplasia, diabetes mellitus, and congenital heart disease: a new syndrome?, J Med Genet, 31, 331, 10.1136/jmg.31.4.331

Senee, 2006, Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism, Nat Genet, 38, 682, 10.1038/ng1802

Henquin, 2004, Pathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues, Diabetes, 53, S48, 10.2337/diabetes.53.suppl_3.S48

Gribble, 1997, The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation, J Physiol, 504, 35, 10.1111/j.1469-7793.1997.00035.x

Zung, 2004, Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2, J Clin Endocrinol Metab, 89, 5504, 10.1210/jc.2004-1241

Codner, 2005, High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation, Diabetes Care, 28, 758, 10.2337/diacare.28.3.758

Sagen, 2004, Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy, Diabetes, 53, 2713, 10.2337/diabetes.53.10.2713

Pearson, 2006, Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations, N Engl J Med, 355, 467, 10.1056/NEJMoa061759

Maedler, 2005, Sulfonylurea induced beta-cell apoptosis in cultured human islets, J Clin Endocrinol Metab, 90, 501, 10.1210/jc.2004-0699

Mitamura, 1996, Ultralente insulin treatment of transient neonatal diabetes mellitus, J Pediatr, 128, 268, 10.1016/S0022-3476(96)70406-7