NF-κB DNA-binding activity in embryos responding to a teratogen, cyclophosphamide

BMC Developmental Biology - Tập 2 - Trang 1-11 - 2002
Arkady Torchinsky1, Lucy Lishanski1, Orit Wolstein2, Jeanne Shepshelovich1, Hasida Orenstein1, Shoshana Savion1, Zeev Zaslavsky1, Howard Carp1, Alexander Brill1, Rivka Dikstein2, Vladimir Toder1, Amos Fein1
1Department of Embryology & Teratology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
2Department of Biological Chemistry, Weismann Institute of Sciences, Rehovot, Israel

Tóm tắt

The Rel/NF-κB transcription factors have been shown to regulate apoptosis in different cell types, acting as inducers or blockers in a stimuli- and cell type-dependent fashion. One of the Rel/NF-κB subunits, RelA, has been shown to be crucial for normal embryonic development, in which it functions in the embryonic liver as a protector against TNFα-induced physiological apoptosis. This study assesses whether NF-κB may be involved in the embryo's response to teratogens. Fot this, we evaluated how NF-KappaB DNA binding activity in embryonic organs demonstraiting differential sensitivity to a reference teratogen, cyclophosphamide, correlates with dysmorphic events induced by the teratogen at the cellular level (excessive apoptosis) and at the organ level (structural anomalies). The embryonic brain and liver were used as target organs. We observed that the Cyclophosphamide-induced excessive apoptosis in the brain, followed by the formation of severe craniofacial structural anomalies, was accompanied by suppression of NF-κB DNA-binding activity as well as by a significant and lasting increase in the activity of caspases 3 and 8. However, in the liver, in which cyclophosphamide induced transient apoptosis was not followed by dysmorphogenesis, no suppression of NF-κB DNA-binding activity was registered and the level of active caspases 3 and 8 was significantly lower than in the brain. It has also been observed that both the brain and liver became much more sensitive to the CP-induced teratogenic insult if the embryos were exposed to a combined treatment with the teratogen and sodium salicylate that suppressed NF-κB DNA-binding activity in these organs. The results of this study demonstrate that suppression of NF-κB DNA-binding activity in embryos responding to the teratogenic insult may be associated with their decreased resistance to this insult. They also suggest that teratogens may suppress NF-κB DNA-binding activity in the embryonic tissues in an organ type- and dose-dependent fashion.

Tài liệu tham khảo

Sadler TW, Hunter ES: Principles of abnormal development. Past, present and future. In: Developmental Toxicology. Edited by: Kimmel CA, Buelke-Sam J. 1994, New York, Raven Press, 53-63.

Knudsen TB: Cell death. In: Drug Toxicity in Embryonic Development I. Edited by: Kavlock RJ, Daston GP. 1997, Berlin, Heidelberg, Springer-Verlag, 211-244.

Green DR: Apoptotic pathways: the roads to ruin. Cell. 1998, 94: 695-698.

M. Barkett, Gilmore TD: Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene. 1999, 18: 6910-6924. 10.1038/sj/onc/1203238.

Aggarwal BB: Apoptosis and nuclear factor-kappaB: a tale of association and dissociation. Biochem Pharmacol. 2000, 6: 1033-1039. 10.1016/S0006-2952(00)00393-2.

Pahl HL: Activators and target genes of Rel/ NF-kB transcription factors. Oncogene. 1999, 18: 6853-6866. 10.1038/sj/onc/1203239.

Kami M: Minireview. The beginning of the end: IkB kinase (IKK) and NF-kB activation. J Biol Chem. 1999, 274: 27339-27342. 10.1074/jbc.274.39.27339.

Chen FE, Ghosh G: Regulation of DNA binding by Rel/NF-κB transcription factors: structural views. Oncogene. 1999, 18: 6845-6852. 10.1038/sj/onc/1203224.

Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D: Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature. 1995, 376: 167-170. 10.1038/376167a0.

Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Jonson R, Kami M: The IKKp subunit of ikb kinase (IKK) is essential for Nuclear Factor kb activation and prevention of apoptosis. J Exp Med. 1999, 189: 1839-1845. 10.1084/jem.189.11.1839.

Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM: Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science. 1999, 284: 321-325. 10.1126/science.284.5412.321.

Dot TS, Marino MW, Takahashi T, Yoshida T, Sakakura T, Old LJ, Obata Y: Absence of tumor necrosis factor rescues RelA-deficient mice from embryonic lethality. Proc Natl Acad Sci USA. 1999, 96: 2994-2999. 10.1073/pnas.96.6.2994.

Torchinsky A, Savion S, Gorivodsky M, Shepsheiovich J, Zaslavsky Z, Fein A, Toder V: Cyclophosphamide-induced teratogenesis in ICR mice: The role of apoptosis. Teratogen Carcinogen Mutagen. 1995, 15: 179-190.

Torchinsky A, Ivnitsky I, Savion S, Shepshelovich J, Gorivodsky M, Fein A, Carp H, Schwartz D, Frankel J, Rotter V, Toder V: Cellular events and the pattern of p53 protein expression following cyclophosphamide-initiated cell death in various organs of developing embryo. Teratog Carcinog Mutagen. 1999, 19: 353-367. 10.1002/(SICI)1520-6866(1999)19:5<353::AID-TCM5>3.0.CO;2-0.

Slee EA, Adrain C, Martin SJ: Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 1999, 6: 1067-1074. 10.1038/sj/cdd/4400601.

Nicholson DW: Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999, 6: 1028-1042. 10.1038/sj/cdd/4400598.

Mirkes PE, Little SA: Teratogen-induced cell death in postimplantation mouse embryos: differential tissue sensitivity and hallmarks of apoptosis. Cell Death Differ. 1998, 5: 592-600. 10.1038/sj/cdd/4400390.

Yin MJ, Yamamoto Y, Gaynor RB: The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998, 396: 77-80. 10.1038/23948.

Sokal RR, Rohlf FJ: Biometry,. New York, Freeman and Company. 1995, 3

Gerondakis S, Grossmann M, Nakamura Y, Pohl T, Grumont R: Genetic approaches in mice to understand Rel/NF-kappaB and IkappaB function: transgenics and knockouts. Oncogene. 1999, 18: 6888-6895. 10.1038/sj/onc/1203236.

Diehl AM: Effect of ethanol on tumor necrosis factor signaling during liver regeneration. Clin Biochem. 1999, 32: 571-578. 10.1016/S0009-9120(99)00057-0.

Schwenger P, Skolnik EY, Vilcek J: Inhibition of tumor necrosis factor-induced p42/p44 mitogen-activated protein kinase activation by sodium salicylate. J Biol Chem. 1996, 271: 8089-8094. 10.1074/jbc.271.14.8089.

Schwenger P, Bellosta P, Vietor I, Basilico C, Skolnik EY, Vilcek J: Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci USA. 1997, 94: 2869-2873. 10.1073/pnas.94.7.2869.

Dong Z, Huang C, Brown RE, Ma WY: Inhibition of activator protein 1 activity and neoplastic transformation by aspirin. J Biol Chem. 1997, 272: 9962-9970. 10.1074/jbc.272.15.9962.

Lee JK, Hwang WS, Lee YD, Han PL: Dynamic expression of SEK1 suggests multiple roles of the gene during embryogenesis and in adult brain of mice. Mol Brain Res. 1999, 66: 133-140. 10.1016/S0169-328X(99)00035-2.

Mirkes PE, Wilson KL, Cornel LM: Teratogen-induced activation of ERK, JNK, and p38 MAP kinases in early postimplantation murine embryos. Teratology. 2000, 62: 14-25. 10.1002/1096-9926(200007)62:1<14::AID-TERA6>3.3.CO;2-0.

Sheikh MS, Fornace AJ: Death and decoy receptors and p53-mediated apoptosis. Leukemia. 2000, 14: 1509-1513. 10.1038/sj/leu/2401865.