Multi-class detection of kiwifruit flower and its distribution identification in orchard based on YOLOv5l and Euclidean distance
Tài liệu tham khảo
Cangi, 2018, Effects of different bud loading levels on the yield, leaf and fruit characteristics of Hayward kiwifruit, Hortic. Sci., 33, 23, 10.17221/3736-HORTSCI
Dias, 2018, Apple flower detection using deep convolutional networks, Comput. Ind., 99, 17, 10.1016/j.compind.2018.03.010
Gonzalez, 1995, Stigmatic receptivity limits the effective pollination period in kiwifruit, J. Am. Soc. Hortic. Sci., 120, 199, 10.21273/JASHS.120.2.199
Jocher, G., Stoken, A., Borovec, J., NanoCode012, ChristopherSTAN, Changyu, L., Laughing, Hogan, A., lorenzomammana, tkianai, yxNONG, AlexWang1900, Diaconu, L., Marc, wanghaoyang0106, ml5ah, Doug, Hatovix, Poznanski, J., L.Y., changyu98, Rai, P., Ferriday, R., Sullivan, T., Xinyu, W., YuriRibeiro, Claramunt, E.R., hopesala, pritul dave, yzchen, 2020. ultralytics/yolov5: v3.0. https://doi.org/10.5281/ZENODO.3983579.
Kuznetsova, 2020, Using YOLOv3 algorithm with pre- and post-processing for apple detection in fruit-harvesting robot, Agronomy, 10, 1016, 10.3390/agronomy10071016
Lim, J.Y., Ahn, H.S., Nejati, M., Bell, J., Williams, H., MacDonald, B.A., 2020. Deep neural network based real-time kiwi fruit flower detection in an orchard environment. arXiv Prepr. arXiv: 2006.04343.
Lin, 2021, Improved YOLO based detection algorithm for floating, Entropy., 23, 1111, 10.3390/e23091111
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J., 2018. PANet: Path Aggregation Network for Instance Segmentation. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake, pp. 8759–8768. doi: 10.1109/CVPR.2018.00913.
Majeed, 2020, Estimating the trajectories of vine cordons in full foliage canopies for automated green shoot thinning in vineyards, Comput. Electron. Agric., 176, 105671, 10.1016/j.compag.2020.105671
McPherson, 2001, Flower quality and fruit size in kiwifruit (Actinidia deliciosa), New Zeal. J. Crop Hortic. Sci., 29, 93, 10.1080/01140671.2001.9514167
Nepal, 2022, Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs, Sensors, 22, 464, 10.3390/s22020464
Salinero, 2009, Phenological growth stages of kiwifruit (Actinidia deliciosa ’Hayward’), Sci. Hortic. (Amsterdam), 121, 27, 10.1016/j.scienta.2009.01.013
Song, 2021, Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting, Comput. Electron. Agric., 181, 105933, 10.1016/j.compag.2020.105933
Suo, 2021, Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking, Comput. Electron. Agric., 182, 106052, 10.1016/j.compag.2021.106052
Thakur, 2004, Effect of thinning on fruit yield, size and quality of kiwifruit cv. allison, Acta Hortic., 662, 359, 10.17660/ActaHortic.2004.662.53
Tian, 2020, Instance segmentation of apple flowers using the improved mask R-CNN model, Biosyst. Eng., 193, 264, 10.1016/j.biosystemseng.2020.03.008
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M., 2020a. Scaled-YOLOv4: Scaling cross stage partial network. arXiv Prepr. arXiv: 2011.08036v1.
Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H., 2020b. CSPNet: A new backbone that can enhance learning capability of CNN. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work. 2020-June, 1571–1580. https://doi.org/10.1109/CVPRW50498.2020.00203.
Wang, 2021, DeepPhenology: Estimation of apple flower phenology distributions based on deep learning, Comput. Electron. Agric., 185, 106123, 10.1016/j.compag.2021.106123
Williams, 2020, Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator, J. F. Robot., 37, 246, 10.1002/rob.21861
Wu, 2021, Segmentation of abnormal leaves of hydroponic lettuce based on DeepLabV3+ for robotic sorting, Comput. Electron. Agric., 190, 106443, 10.1016/j.compag.2021.106443
Xu, 2021, A forest fire detection system based on ensemble learning, Forests, 12, 1, 10.3390/f12020217
Zhang, 2020, Multi-class object detection using Faster R-CNN and estimation of shaking locations for automated shake-and-catch apple harvesting, Comput. Electron. Agric., 173, 105384, 10.1016/j.compag.2020.105384