Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination
Tài liệu tham khảo
Ahn, H.S., Dayoub, F., Popović, M., MacDonald, B.A., Siegwart, R., Sa, I., 2018. An overview of perception methods for horticultural robots: From pollination to harvest. arXiv Prepr. arXiv: 1807.03124.
Barnett, 2017, Robotic pollination - targeting kiwifruit flowers for commercial application, Int. Tri-Conference Precis. Agric.
Bochkovskiy, A., Wang, C., Liao, H.M., 2020. YOLOv4: Optimal speed and accuracy of object detection. arXiv Prepr. arXiv:2004.10934.
Dias, 2018, Multispecies fruit flower detection using a refined semantic segmentation network, IEEE Robot. Autom. Lett., 3, 3003, 10.1109/LRA.2018.2849498
Dias, 2018, Apple flower detection using deep convolutional networks, Comput. Ind., 99, 17, 10.1016/j.compind.2018.03.010
Duke, M., Barnett, J., Bell, J., Jones, M.H., Martinsen, P., McDonald, B., Nejati, M., Scarfe, A., Schaare, P., Seabright, M., Williams, H., Ahn, J.L., 2017. Automated pollination of kiwifruit flowers. In: 7th Asian-Australasian Conf. Precis. Agric. 1–5. https://doi.org/10.5281/ZENODO.895619.
Farjon, 2020, Detection and counting of flowers on apple trees for better chemical thinning decisions, Precis. Agric., 21, 503, 10.1007/s11119-019-09679-1
Fu, 2021, Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model, Precis. Agric., 22, 754, 10.1007/s11119-020-09754-y
Fu, 2020, Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review, Comput. Electron. Agric., 177, 105687, 10.1016/j.compag.2020.105687
Gao, 2020, Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN, Comput. Electron. Agric., 176, 105634, 10.1016/j.compag.2020.105634
Gianni, T., Vania, M., 2018. Artificial pollination in kiwifruit and olive trees. Pollinat. Plants 10.5772/in. https://doi.org/10.5772/intechopen.74831.
Gonzalez, 1995, Stigmatic receptivity limits the effective pollination period in kiwifruit, J. Am. Soc. Hortic. Sci., 120, 199, 10.21273/JASHS.120.2.199
Hong, S.W., Choi, L., 2012. Automatic recognition of flowers through color and edge based contour detection. In: 2012 3rd Int. Conf. Image Process. Theory, Tools Appl. IPTA 2012 141–146. https://doi.org/10.1109/IPTA.2012.6469535.
Jiang, 2020, Automatic behavior recognition of group-housed goats using deep learning, Comput. Electron. Agric., 177, 105706, 10.1016/j.compag.2020.105706
Lim, J.Y., Ahn, H.S., Nejati, M., Bell, J., Williams, H., MacDonald, B.A., 2020. Deep neural network based real-time kiwi fruit flower detection in an orchard environment. arXiv Prepr. arXiv: 2006.04343.
Liu, 2020, YOLO-tomato: a robust algorithm for tomato detection based on YOLOv3, Sensors (Switzerland), 20, 2145, 10.3390/s20072145
Liu, 2016, SSD: Single shot multibox detector, Lect. Notes Comput. Sci., 9905 LNCS, 21, 10.1007/978-3-319-46448-0_2
Mcpherson, 2001, Flower quality and fruit size in kiwifruit (Actinidia deliciosa), New Zeal. J. Crop Hortic. Sci., 29, 93, 10.1080/01140671.2001.9514167
Ogden, S.S., Guo, T., 2019. Characterizing the deep neural networks inference performance of mobile applications. arXiv Prepr. arXiv: 1909.04783.
Pornpanomchai, 2020, Herb flower recognition system (HFRS). ICEIE 2010 - 2010 Int, Conf. Electron. Inf. Eng. Proc., 1, 123
Ohi, N., Lassak, K., Watson, R., Strader, J., Du, Y., Yang, C., Hedrick, G., Nguyen, J., Harper, S., Reynolds, D., Kilic, C., Hikes, J., Mills, S., Castle, C., Buzzo, B., Waterland, N., Gross, J., Park, Y.L., Li, X., Gu, Y., 2018. Design of an autonomous precision pollination robot. arXiv Prepr. arXiv: 1809.10080.
Redmon, J., Farhadi, A., 2018. YOLOv3: An incremental improvement. arXiv Prepr. arXiv: 1804.02767.
Soviany, P., Ionescu, R.T., 2018. Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction. In: Proc. - 2018 20th Int. Symp. Symb. Numer. Algorithms Sci. Comput. SYNASC 2018 209–214. https://doi.org/10.1109/SYNASC.2018.00041.
Tacconi, 2016, Kiwifruit pollination: the interaction between pollen quality, pollination systems and flowering stage, J. Berry Res., 6, 417, 10.3233/JBR-160138
Tian, 2019, Detection and recognition of flower image based on SSD network in video stream, J. Phys. Conf. Ser., 1237, 032045, 10.1088/1742-6596/1237/3/032045
Tian, 2020, Instance segmentation of apple flowers using the improved mask R-CNN model, Biosyst. Eng., 193, 264, 10.1016/j.biosystemseng.2020.03.008
Wang, C., Liao, H.M., Wu, Y., Chen, P., 2019. CSPNet: A new backbone that can enhance learning capability of CNN. arXiv Prepr. arXiv: 1911.11929v1.
Wang, 2020, Side-view apple flower mapping using edge-based fully convolutional networks for variable rate chemical thinning, Comput. Electron. Agric., 178, 105673, 10.1016/j.compag.2020.105673
Williams, 2020, Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator, J. F. Robot., 37, 246, 10.1002/rob.21861
Wu, 2020, Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments, Comput. Electron. Agric., 178, 105742, 10.1016/j.compag.2020.105742
Zhang, Q., Karkee, M., Tabb, A., 2019. The use of agricultural robots in orchard management. arXiv 1–22. https://doi.org/10.19103/as.2019.0056.14.