Real-time detection of kiwifruit flower and bud simultaneously in orchard using YOLOv4 for robotic pollination

Computers and Electronics in Agriculture - Tập 193 - Trang 106641 - 2022
Guo Li1, Rui Suo1, Guanao Zhao1, Changqing Gao1, Longsheng Fu1,2,3, Fuxi Shi1, Jaspreet Dhupia4, Rui Li1, Yongjie Cui1
1College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
2Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
3Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China
4Department of Mechanical Engineering, The University of Auckland, Private Bag, 92019 Auckland, New Zealand

Tài liệu tham khảo

Ahn, H.S., Dayoub, F., Popović, M., MacDonald, B.A., Siegwart, R., Sa, I., 2018. An overview of perception methods for horticultural robots: From pollination to harvest. arXiv Prepr. arXiv: 1807.03124. Barnett, 2017, Robotic pollination - targeting kiwifruit flowers for commercial application, Int. Tri-Conference Precis. Agric. Bochkovskiy, A., Wang, C., Liao, H.M., 2020. YOLOv4: Optimal speed and accuracy of object detection. arXiv Prepr. arXiv:2004.10934. Dias, 2018, Multispecies fruit flower detection using a refined semantic segmentation network, IEEE Robot. Autom. Lett., 3, 3003, 10.1109/LRA.2018.2849498 Dias, 2018, Apple flower detection using deep convolutional networks, Comput. Ind., 99, 17, 10.1016/j.compind.2018.03.010 Duke, M., Barnett, J., Bell, J., Jones, M.H., Martinsen, P., McDonald, B., Nejati, M., Scarfe, A., Schaare, P., Seabright, M., Williams, H., Ahn, J.L., 2017. Automated pollination of kiwifruit flowers. In: 7th Asian-Australasian Conf. Precis. Agric. 1–5. https://doi.org/10.5281/ZENODO.895619. Farjon, 2020, Detection and counting of flowers on apple trees for better chemical thinning decisions, Precis. Agric., 21, 503, 10.1007/s11119-019-09679-1 Fu, 2021, Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model, Precis. Agric., 22, 754, 10.1007/s11119-020-09754-y Fu, 2020, Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review, Comput. Electron. Agric., 177, 105687, 10.1016/j.compag.2020.105687 Gao, 2020, Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN, Comput. Electron. Agric., 176, 105634, 10.1016/j.compag.2020.105634 Gianni, T., Vania, M., 2018. Artificial pollination in kiwifruit and olive trees. Pollinat. Plants 10.5772/in. https://doi.org/10.5772/intechopen.74831. Gonzalez, 1995, Stigmatic receptivity limits the effective pollination period in kiwifruit, J. Am. Soc. Hortic. Sci., 120, 199, 10.21273/JASHS.120.2.199 Hong, S.W., Choi, L., 2012. Automatic recognition of flowers through color and edge based contour detection. In: 2012 3rd Int. Conf. Image Process. Theory, Tools Appl. IPTA 2012 141–146. https://doi.org/10.1109/IPTA.2012.6469535. Jiang, 2020, Automatic behavior recognition of group-housed goats using deep learning, Comput. Electron. Agric., 177, 105706, 10.1016/j.compag.2020.105706 Lim, J.Y., Ahn, H.S., Nejati, M., Bell, J., Williams, H., MacDonald, B.A., 2020. Deep neural network based real-time kiwi fruit flower detection in an orchard environment. arXiv Prepr. arXiv: 2006.04343. Liu, 2020, YOLO-tomato: a robust algorithm for tomato detection based on YOLOv3, Sensors (Switzerland), 20, 2145, 10.3390/s20072145 Liu, 2016, SSD: Single shot multibox detector, Lect. Notes Comput. Sci., 9905 LNCS, 21, 10.1007/978-3-319-46448-0_2 Mcpherson, 2001, Flower quality and fruit size in kiwifruit (Actinidia deliciosa), New Zeal. J. Crop Hortic. Sci., 29, 93, 10.1080/01140671.2001.9514167 Ogden, S.S., Guo, T., 2019. Characterizing the deep neural networks inference performance of mobile applications. arXiv Prepr. arXiv: 1909.04783. Pornpanomchai, 2020, Herb flower recognition system (HFRS). ICEIE 2010 - 2010 Int, Conf. Electron. Inf. Eng. Proc., 1, 123 Ohi, N., Lassak, K., Watson, R., Strader, J., Du, Y., Yang, C., Hedrick, G., Nguyen, J., Harper, S., Reynolds, D., Kilic, C., Hikes, J., Mills, S., Castle, C., Buzzo, B., Waterland, N., Gross, J., Park, Y.L., Li, X., Gu, Y., 2018. Design of an autonomous precision pollination robot. arXiv Prepr. arXiv: 1809.10080. Redmon, J., Farhadi, A., 2018. YOLOv3: An incremental improvement. arXiv Prepr. arXiv: 1804.02767. Soviany, P., Ionescu, R.T., 2018. Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction. In: Proc. - 2018 20th Int. Symp. Symb. Numer. Algorithms Sci. Comput. SYNASC 2018 209–214. https://doi.org/10.1109/SYNASC.2018.00041. Tacconi, 2016, Kiwifruit pollination: the interaction between pollen quality, pollination systems and flowering stage, J. Berry Res., 6, 417, 10.3233/JBR-160138 Tian, 2019, Detection and recognition of flower image based on SSD network in video stream, J. Phys. Conf. Ser., 1237, 032045, 10.1088/1742-6596/1237/3/032045 Tian, 2020, Instance segmentation of apple flowers using the improved mask R-CNN model, Biosyst. Eng., 193, 264, 10.1016/j.biosystemseng.2020.03.008 Wang, C., Liao, H.M., Wu, Y., Chen, P., 2019. CSPNet: A new backbone that can enhance learning capability of CNN. arXiv Prepr. arXiv: 1911.11929v1. Wang, 2020, Side-view apple flower mapping using edge-based fully convolutional networks for variable rate chemical thinning, Comput. Electron. Agric., 178, 105673, 10.1016/j.compag.2020.105673 Williams, 2020, Autonomous pollination of individual kiwifruit flowers: Toward a robotic kiwifruit pollinator, J. F. Robot., 37, 246, 10.1002/rob.21861 Wu, 2020, Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments, Comput. Electron. Agric., 178, 105742, 10.1016/j.compag.2020.105742 Zhang, Q., Karkee, M., Tabb, A., 2019. The use of agricultural robots in orchard management. arXiv 1–22. https://doi.org/10.19103/as.2019.0056.14.