Molecular species of mycolic acid subclasses in eight strains ofMycobacterium smegmatis

Lipids - Tập 23 - Trang 1132-1138 - 1988
T. Baba1,2, K. Kaneda3, E. Kusunose2, M. Kusunose2, I. Yano4
1Shoin Women's College, Kobe
2Toneyama Institute for Tuberculosis Research, Osaka, Japan
3Department of Bacteriology, Niigata University School of Medicine, Niigata
4Department of Bacteriology, Osaka City University Medical School, Osaka, Japan

Tóm tắt

Thin layer chromatographic and gas chromatographic separation and mass spectrometric identification of mycolic acid subclasses and molecular species from eight strains ofMycobacterium smegmatis were established. Two major adjacent spots and a lower minor one were detected on silica gel thin layer chromatograms of methyl esters. The most abundant subclass showing the highest Rf value on TLC was that of α-mycolic acids (M1), the second was that of α′-mycolic acids (M1′) a shorter homologue than α-mycolates, and the third was the hydroxy mycolic acids (M4) derived from epoxy mycolic acids. They were identified by gas chromatography-mass spectrometry as their trimethylsilylether derivatives. α′-Mycolic acids were monoenoic acids ranging from C60 to C66 and possessing an α-unit of C24∶0. Such profiles of α′-mycolic acids were common in eight strains. α-Mycolates were dienoic acids ranging from C75 to C79 and possessing an α-unit of C24∶0. In most strains, the major molecular species of α-mycolates were odd-carbon-numbered, centering at C77 and C79, possessing a methyl branch in the even-carbon-numbered straight chain. The average carbon number of α-mycolates, from seven strains examined, was about 78, but that of the Takeo strain was 76.3. The profiles of epoxy mycolic acid molecular species composition from eight strains ranging from C75 to C81 were very similar to their M1 subclass profiles.

Tài liệu tham khảo

Anderson, R.J. (1929)J. Biol. Chem. 85, 351–354.

Stodola, F.H., Lesuk, A., and Anderson, R.J. (1938)J. Biol. Chem. 126, 505–513.

Asselineau, J., and Lederer, E. (1950)Nature London 166, 782–783.

Barbier, M., and Lederer, E. (1954)Biochim. Biophys. Acta 14, 246–258.

Lederer, E. (1967)Chem. Phys. Lipids 1, 294–315.

Etémadi, A.H., Okuda, R., and Lederer, E. (1964)Bull. Soc. Chim. Fr. 4, 868–870.

Minnikin, D.E., Alshamaony, L., and Goodfellow, M. (1975)J. Gen. Microbiol. 88, 200–204.

Bordet, C., and Michel, G. (1969)Bull. Soc. Chim. Biol. 51, 527–547.

Asselineau, J. (1961)Biochim. Biophys. Acta 54, 359–361.

Alshamaony, L., Goodfellow, M., and Minnikin, D.E. (1976)J. Gen. Microbiol. 92, 188–199.

Goodfellow, M., and Anderson, G. (1977)J. Gen. Microbiol. 100, 99–122.

Tombiyasu, I., and Yano, I. (1984)Eur. J. Biochem. 139, 173–180.

Alshamaony, L., Goodfellow, M., Minnikin, D.E., Bowden, G.H., and Hardie, J.M. (1977)J. Gen. Microbiol. 98, 205–213.

Collins, M.D., Goodfellow, M., and Minnikin, D.E. (1982)J. Gen. Microbiol. 128, 129–149.

Athalye, M., Noble, W.C., Mallet, A.I., and Minnikin, D.E. (1984)J. Gen. Microbiol. 130, 513–519.

Lederer, E., Adam, A., Ciorbaru, R., Petít, J.P., and Wietzerbin, J. (1975)Mol. Cell Biochem. 7, 87–104.

Durand, E., Welby, M., Lanéelle, G., and Tocanne, J.F. (1979)Eur. J. Biochem. 93, 103–112.

Retzinger, G.S., Meredith, S.C., Takayama, K., Hunter, R.L., and Kézdy, F.J. (1981)J. Biol. Chem. 256, 8208–8216.

Retzinger, G.S., Meredith, S.C., Hunter, R.L., Takayama, K., and Kézdy, F.J. (1982)J. Immunol. 129, 735–744.

Toriyama, S., Yano, I., Masui, M., Kusunose, E., and Kusunose, E. (1978)FEBS Lett 95, 111–115.

Toriyama, S., Yano, I., Masui, M., Kusunose, E., Kusunose, M., and Akimori, N. (1980)J. Biochem. 88, 211–221.

Kaneda, K., Naito, S., Imaizumi, S., Yano, I., Mizuno, S., Tomiyasu, I., Baba, T., Kusunose, E., and Kusunose, M. (1986)J. Clin. Microbiol. 24, 1060–1070.

Yano, I., Kageyama, K., Ohno, Y., Masui, M., Kusunose, E., Kusunose, M., and Akimori, N. (1978)Biomed. Mass Spectrom. 5, 14–24.

Tomiyasu, I. (1982)J. Bacteriol. 151, 828–837.

Tomiyasu, I., Toriyama, S., Yano, I., and Masui, M. (1981)Chem. Phys. Lipids 28, 41–54.

Wada, H., Okada, H., Suginaka, H., Tomiyasu, I., and Yano, I. (1981)FEMS Microbiol. Lett. 11, 187–192.

David, H.L. (1977)J. Gen. Microbiol. 101, 99–102.

Matula, M., Mitchell, M., and Elbein, A.D. (1971)J. Bacteriol. 107, 217–222.

Winder, F.G., and Denneny, J.M. (1959)Nature London 184, 742.

Izumori, K., Rees, A.W., and Elbein, A.D. (1975)J. Biol. Chem. 250, 8085–8087.

Tsukamura, M., Mizuno, S., and Tsukamura, S. (1968)Jpn. J. Microbiol. 12, 151–166.

Wong, M.Y.H., Steck, P.A., and Gray, G.R. (1979)J. Biol. Chem. 254, 5734–5740.

Wong, M.Y.H., and Gray, G.R. (1979)J. Biol. Chem. 254, 5741–5744.

Dannielson, S.T., and Gray, G.R. (1982)J. Biol. Chem. 257, 12196–12203.

Minnikin, D.E., Hutchinson, I.G., and Calidicott, A.B. (1980)J. Chromatogr. 188, 221–223.

Minnikin, D.E., Minnikin, S.M., Hutchinson, I.G., Goodfellow, M., and Grange, J.M. (1984)J. Gen. Microbiol. 130, 363–367.

Minnikin, D.E., Minnikin, S.M., and Goodfellow, M. (1982)Biochim. Biophys. Acta 712, 616–620.

Gordon, R.E., and Smith, M. (1953)J. Bacteriol. 66, 41–48.

Dresin, R.B., Scoggin, C., and Davidson, P.T. (1976)Tubercle 57, 49–57.

Minnikin, D.E., Minnikin, S.M., Goodfellow, M., and Stanford, J.L. (1982)J. Gen. Microbiol. 128, 817–822.

Kaneda, K., Imaizumi, S., Mizuno, S., Baba, T., Tsukamura, M., and Yano, I. (1988)J. Gen. Microbiol. 134, 2213–2229.

Daffé, M., Lanéelle, M.A., Puzo, G., and Asselineau, C. (1981)Tetrahedron Lett. 22, 4515–4516.

Lévy-Frébault, V., Daffé, M., Goh, K.S., Lanéelle, M.A., Asselineau, C., and David, H.L. (1983)J. Clin. Microbiol. 17, 744–752.