Modulation of tau phosphorylation by environmental copper

Translational Neurodegeneration - Tập 3 - Trang 1-10 - 2014
Kellen Voss1, Christopher Harris1, Martina Ralle2, Megan Duffy2, Charles Murchison1, Joseph F Quinn3,1
1Department of Neurology, Oregon Health and Sciences University, Portland, USA
2Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, USA
3Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), Portland Veterans Affairs Medical Center, Portland, USA

Tóm tắt

The transition metal copper enhances amyloid β aggregation and neurotoxicity, and in models of concomitant amyloid and tau pathology, copper also promotes tau aggregation. Since it is not clear if the effects of environmental copper upon tau pathology are dependent on the presence of pathological amyloid β, we tested the effects of copper overload and complexing in disease models which lack pathological amyloid β. We used cell culture and transgenic murine models to test the effects of environmental copper on tau phosphorylation. We used oral zinc acetate as a copper lowering agent in mice and examined changes in blood and brain metals through inductively coupled plasma mass spectroscopy. Behavioral effects of copper lowering were assessed with Morris water maze and novel object recognition tasks. Changes in tau phosphorylation were examined by phosphorylation specific antibodies on Western blots. In human neuroblastoma cells, excess copper promoted tau phosphorylation and a copper complexing agent, tetrathiomolybdate, attenuated tau phosphorylation. In a transgenic mouse model expressing wild type human tau, copper-lowering by oral zinc suppressed plasma and brain levels of copper, and resulted in a marked attenuation of tau phosphorylation. No significant changes in behavior were observed with copper lowering, but a trend to improved recognition of the novel object was observed in zinc acetate treated mice. We propose that reduction of brain copper by blocking uptake of copper from the diet may be a viable strategy for modulating tau pathology in Alzheimer’s disease. The potential benefits of this approach are tempered by the absence of a behavioral benefit and by the health risks of excessive lowering of copper.

Tài liệu tham khảo

Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, Scarpa RC, Saunders AJ, Lim J, Moir RD, Glabe C, Bowden EF, Masters CL, Fairlie DP, Tanzi RE, Bush AI: Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999, 274(52):37111-37116.

Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA: In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 2000, 74(1):270-279.

Ferenci P: Wilson’s disease. Clin Gastroenterol Hepatol 2005, 3(8):726-733.

Brewer GJ, Askari F, Lorincz MT, Carlson M, Schilsky M, Kluin KJ, Hedera P, Moretti P, Fink JK, Tankanow R, Dick RB, Sitterly J: Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol 2006, 63(4):521-527.