Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tích lũy thủy ngân trong zooplankton và mối quan hệ của nó với quá trình phú dưỡng trong các vùng nước ở khu vực karst tỉnh Quý Châu, miền Tây Nam Trung Quốc
Tóm tắt
Zooplankton đóng vai trò quan trọng trong quá trình chuyển giao thủy ngân (Hg) từ các vị trí dinh dưỡng thấp hơn lên các vị trí dinh dưỡng cao hơn trong chuỗi thức ăn. Trong nghiên cứu này, các mức thủy ngân tổng (THg) và methylmercury (MeHg) đã được đo lường trong ba kích thước khác nhau của zooplankton thu thập từ ba hồ chứa (Hồ Hồng Phong, Hồ Bạch Hoa và Hồ A Ha) và một vùng đất ngập nước ở khu vực karst nhằm tìm hiểu sự tích lũy thủy ngân trong zooplankton từ các môi trường kiềm. Kết quả cho thấy rằng nước kiềm có mức độ MeHg trong zooplankton thấp hơn (0,1 đến 66,8 ng g−1) so với hầu hết các nguồn nước axit được báo cáo. Tuy nhiên, mức độ THg trong zooplankton (6,3 đến 494,9 ng g−1) thì tương đương. Macro-zooplankton (> 500 μm) có mức THg và MeHg cao hơn đáng kể so với meso-zooplankton (116 đến 500 μm) ở cả ba hồ chứa trong mọi mùa, điều này cho thấy sự sinh trưởng sinh học của thủy ngân trong chuỗi thức ăn. Mối tương quan giữa Hg trong nước và zooplankton cũng như Hg trong zooplankton có kích thước khác nhau chỉ ra rằng sự sinh trưởng sinh học THg trong zooplankton có liên quan đến mức THg trong nước; tuy nhiên, sự sinh trưởng sinh học MeHg trong zooplankton bị ảnh hưởng bởi nhiều yếu tố khác, chẳng hạn như thói quen ăn uống và sinh sống của chúng. Trong ba hồ chứa, nồng độ THg và MeHg trong zooplankton giảm khi quá trình phú dưỡng tăng lên. Tuy nhiên, so với ba hồ chứa, vùng đất ngập nước Caohai, nơi có nhiều thực vật dưới nước, có mức độ dinh dưỡng thấp hơn và hàm lượng MeHg trong nước cao hơn nhưng mức độ MeHg trong zooplankton và các yếu tố tích lũy sinh học (BAFs) lại thấp hơn nhiều. Khối lượng thực vật tồn dư lớn có thể làm loãng thủy ngân trong chuỗi thức ăn, cho thấy rằng sản lượng sinh học cao có thể dẫn đến sự tích lũy Hg thấp hơn, chứ không chỉ bị ảnh hưởng bởi mức độ dinh dưỡng.
Từ khóa
#thủy ngân; zooplankton; methylmercury; phú dưỡng; khu vực karst; tỉnh Quý ChâuTài liệu tham khảo
Back RC, Watras CJ (1995) Mercury in zooplankton of northern Wisconsin lakes: taxonomic and site-specific trends. Water Air Soil Pollut 80(1-4):931–938. https://doi.org/10.1007/978-94-011-0153-0_101
Bates LM, Hall BD (2012) Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America. Environ Pollut 160:153–160. https://doi.org/10.1016/j.envpol.2011.08.040
Bloom NS (1989) Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapor atomic fluorescence detection. Can J Fish Aquat Sci 46:1131–1140. https://doi.org/10.1139/f89-147
Bloom NS, Fitzgerald WF (1988) Determination of volatile mercury species at the picogram level by low temperature gas chromatography with cold-vapor atomic fluorescence detection. Anal Chim Acta 208:151–161. https://doi.org/10.1016/S0003-2670(00)80743-6
Carlson RE (1977) A trophic state index for lakes. Limnol Oceanogr 22:361–369. https://doi.org/10.4319/lo.1977.22.2.0361
Chase ME, Jones SH, Hennigar P et al (2001) Gulfwatch: monitoring spatial and temporal patterns of trace metal and organic contaminants in the Gulf of Maine (1991–1997) with the blue mussel, Mytilus edulis L. Mar Pollut Bull 42(6):490–504. https://doi.org/10.1016/S0025-326X(00)00193-4
Chen CY, Folt CL (2005) High plankton densities reduce mercury biomagnification. Environ Sci Technol 39(1):115–121. https://doi.org/10.1021/es0403007
Chen CY, Stemberger RS, Kamman NC et al (2005) Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast US. Ecotoxicology 14(1-2):135–147. https://doi.org/10.1007/s10646-004-6265-y
Chen CY, Kamman NC, Williams JJ, Bugge DM, Taylor VF, Jackson BP, Miller EK (2012) Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America). Environ Pollut 161(1):343–349. https://doi.org/10.1016/j.envpol.2011.08.048
Driscoll CT, Yan C, Schofield CL (1994) The mercury cycle and fish in the Adirondack lakes. Environ Sci Technol 28(30):136–143. https://doi.org/10.1021/es00052a721
Driscoll CT, Holsapple J, Schofield CL et al (1998) The chemistry and transport of mercury in a small wetland in the Adirondack region of New York. USA Biogeochem 40:137–146. https://doi.org/10.1023/A:1005989229089
Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, Holsen T, Kamman NC, Munson R (2007) Mercury contamination in remote forest and aquatic ecosystems in the Northeastern US: sources, transformations and management options. Bioscience 57:17–28. https://doi.org/10.1641/B570106
Environment Canada (2004) Canadian guidance framework for the management of phosphorus in freshwater systems. National Guidelines and Standards Office, Water Policy and Coordination Directorate, Environment Canada, Report 1-8:64–65
Feng X, Sommar J, Lindqvist O, Hong Y (2002) Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China. Water Air Soil Pollut 139(1-4):311–324. https://doi.org/10.1023/A:1015846605651
Feng X, Meng B, Yan H, Fu X, Yao H, & Shang L. 2018a. Biogeochemical cycling of mercury in the Hongfeng, Baihua, and Aha reservoirs. In: Biogeochemical cycle of mercury in reservoir systems in Wujiang river basin, Southwest China. Springer, Singapore, pp 201–302. https://doi.org/10.1007/978-981-10-6719-87
Feng X, Meng B, Yan H, Fu X, Yao H, Shang L (2018b) Analysis of mercury species in the environmental samples. In: Biogeochemical cycle of mercury in reservoir systems in Wujiang river basin, Southwest China. Springer, Singapore, pp 9–19. https://doi.org/10.1007/978-981-10-6719-8_2
Gantner N, Power M, Iqaluk D, Meili M, Borg H, Sundbom M, ... Muir DC (2010) Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part I: insights from trophic relationships in 18 lakes. Environ Toxicol Chem: Int J 29(3):621–632. https://doi.org/10.1002/etc.95
Garcia E, Carignan R, Lean DR (2007) Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires. Environ Monit Assess 131(1-3):1–11. https://doi.org/10.1007/s10661-006-9442-z
Golding GR, Sparling R, Kelly CA (2008) Effect of pH on intracellular accumulation of trace concentrations of Hg (II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol 74(3):667–675. https://doi.org/10.1128/AEM.00717-07
Gosnell KJ, Balcom PH, Tobias CR, Gilhooly WP, Mason RP (2017) Spatial and temporal trophic transfer dynamics of mercury and methylmercury into zooplankton and phytoplankton of Long Island Sound. Limnol Oceanogr 62(3):1122–1138. https://doi.org/10.1002/Ino.10490
Guimarães JRD, Fostier AH, Forti MC, Melfi JA, Kehrig H, Mauro JBN, ..., Krug JF (1999) Mercury in human and environmental samples from two lakes in Amapa, Brazilian Amazon. Ambio-J Hum Environ Res Manag 28(4):296–301. https://doi.org/10.1080/027868299304435
Guimaraes JRD, Meili M, Hylander LD, e Silva EDC, Roulet M, Mauro JBN, de Lemos RA (2000) Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Sci Total Environ 261(1-3):99–107. https://doi.org/10.1016/S0048-9697(00)00628-8
Guo Y, Zhao YZ, Long SX, Li YL, Zhang B (2015) Study on water environmet characteristics in the stage of governance effect of lake eutrophication: taking drinking water sources of Hongfeng Lake in Guiyang as an example. Environ Pollut Control (In Chinese)
Gustin MS, Lindberg S, Marsik F, Casimir A, Ebinghaus R, Edwards G, ..., London J (1999) Nevada STORMS project: measurement of mercury emissions from naturally enriched surfaces. J Geophys Res-Atmos 104(D17):21831–21844. https://doi.org/10.1029/1999JD900351
Hall BD, Bodaly RA, Fudge RJP et al (1997) Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollut 100(1-2):13–24. https://doi.org/10.1023/A:1018071406537
Hall BD, Cherewyk KA, Paterson MJ, Bodaly RDA (2009) Changes in methyl mercury concentrations in zooplankton from four experimental reservoirs with differing amounts of carbon in the flooded catchments. Can J Fish Aquat Sci 66(11):1910–1919. https://doi.org/10.1139/F09-123
He T, Feng X, Guo Y, Qiu G, Li Z, Liang L, Lu J (2008) The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng Reservoir, Guizhou, China. Environ Pollut 154(1):56–67. https://doi.org/10.1016/j.envpol.2007.11.013
He TR, Wu YY, Feng XB (2010) The impact of eutrophication on distribution and speciation of mercury in Hongfeng Reservoir, Guizhou Province. J Lake Sci (In Chinese)
He T, Zhu Y, Yin D, Luo G, An Y, Yan H, Qian X (2015) The impact of acid mine drainage on the methylmercury cycling at the sediment–water interface in Aha Reservoir, Guizhou, China. Environ Sci Pollut Res 22(7):5124–5138. https://doi.org/10.1007/s11356-014-3864-x.
Horvat M, Liang L, Bloom NS (1993) Comparison of distillation with other current isolation methods for the determination of methyl mercury compounds in low level environmental samples. Part 2: water. Anal Chim Acta 282:153–168. https://doi.org/10.1016/0003-2670(93)80364-Q
Jiang YZ, Chu NS (1979) Crustacea. Freshwater cladocerans. In: Fauna Sinica. Science Press, Beijing, p 1–294 (In Chinese)
Kainz M, Mazumder A (2005) Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton. Environ Sci Technol 39(6):1666–1672. https://doi.org/10.1021/es049119o
Kainz MJ, Lucotte M, Parrish CC (2002) Methyl mercury in zooplankton—the role of size, habitat, and food quality. Can J Fish Aquat Sci 59(10):1606–1615. https://doi.org/10.1139/f02-125
Kainz M, Telmer K, Mazumder A (2006) Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish. Sci Total Environ 368(1):271–282. https://doi.org/10.1016/j.scitotenv.2005.09.035
Kelly CA, Rudd JW, Holoka MH (2003) Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. Environ Sci Technol 37(13):2941–2946. https://doi.org/10.1021/es026366o
Kratzer CR, Brezonik PL (1981) A Carlson-type trophic state index for nitrogen in FLORIDA lakes 1. JAWRA J Am Water Resour Assoc 17(4):713–715. https://doi.org/10.1111/j.1752-1688.1981.tb01282.x
Li GH (2004) Study on environmental mercury pollution in zinc smelting in Guizhou Province. Southwest Agricultural University, Chongqing (In Chinese)
Liu RH, Wang QC, Lu XG, Ma ZW, Fang FM (2002) Mercury in the peat bog ecosystem in Xiaoxing an mountain in China. Chin J Enviro Sci (04):102–106 (In Chinese)
Long SX, Chen Y, Yu ZX, Guo Y, Pan J (2012) Characteristics of peridiniopsis bloom of spring in Sanbanxi reservoir of Qiandongnan state of Guizhou. Environ Monit China 28(6):27–31 (In Chinese)
Long SX, Yang Y, Xia PH, Chen C, Liu ZW, Ma JR, ..., Yun G (2016) Accumulation of metals in zooplankton from karst plateau reservoirs with different eutrophic status in Guizhou Province, P R China Crustaceana 89(5):537–557. https://doi.org/10.1163/15685403-00003545
Long SX, Hamilton PB, Yang Y, Wang S, Chen C, Tao R (2018) Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China. Environ Pollut 239:147–160. https://doi.org/10.1016/j.envpol.2018.04.008
Louis VLS, Rudd JWM, Kelly CA, Beaty KG, Bloom NS, Flett RJ (1994) Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can J Fish Aquat Sci 51:1065–1076. https://doi.org/10.1139/f94-106
Lu TC, Liu CQ, Wang SL, Xu F, Liu F (2007) Seasonal variability of p(CO2) in the two karst reservoirs, Hongfeng and Baihua lakes in Guizhou province, China. Environ Sci 12:2674–2681 (In Chinese)
Masson S, Tremblay A (2003) Effects of intensive fishing on the structure of zooplankton communities and mercury levels. Sci Total Environ 304(1-3):377–390. https://doi.org/10.1016/S0048-9697(02)00583-1
Matthews R, Hilles M, Pelletier G (2002) Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation. Hydro-biologia 468(1-3):107–121. https://doi.org/10.1023/A:1015288519122
Mergler D, Anderson HA, Chan LHM et al (2007) Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO 36(1):3–11. https://doi.org/10.1579/0044-7447(2007)36(3:MEAHEI)2.0.CO;2
Miskimmin BM, Rudd JW, Kelly CA (1992) Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water. Can J Fish Aquat Sci 49(1):17–22. https://doi.org/10.1139/f92-002
Monson BA, Brezonik PL (1999) Influence of food, aquatic humus, and alkalinity on methylmercury uptake by Daphnia magna. Environ Toxicol Chem 18(3):560–566. https://doi.org/10.1002/etc.5620180326
Morel FM, Kraepiel AM, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29(29):543–566. https://doi.org/10.1146/annurev.ecolsys.29.1.543
Pápista É, Ács É, Böddi B (2002) Chlorophyll-a determination with ethanol – acritical test. Hydrobiologia 485(1):191–198. https://doi.org/10.1023/A:1021329602685
Paterson MJ, Rudd JW, St Louis V (1998) Increases in total and methylmercury in zooplankton following flooding of a peatland reservoir. Environ Sci Technol 32(24):3868–3874. https://doi.org/10.1021/es980343l
Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci 99(7):4419–4423. https://doi.org/10.1073/pnas.072531099
Poulet SA (1976) Feeding of Pseudocalanus minutus on living and non-living particles. Mar Biol 34(2):117–125. https://doi.org/10.1007/BF00390753
Qian XL, Feng XB, Bi XY (2009) Effect of water quality parameters on mercury methylation in the surface waters of Caohai lake. J Southwest Univ (Nat Sci Ed) 31(11):67–71 (In Chinese)
Qiu G, Feng X, Wang S, Shang L (2006) Environmental contamination of mercury from Hg-mining areas in Wuchuan, northeasten Guizhou, China. Environ Pollut 142(3):549–558. https://doi.org/10.1016/j.envpol.2005.10.015
Razavi NR, Qu M, Chen D, Zhong Y, Ren W, Wang Y, Campbell LM (2015) Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregion. Limnol Oceanogr 60(2):386–401. https://doi.org/10.1002/lno.10036
Rolfhus KR, Hall BD, Monson BA, Paterson MJ, Jeremiason JD (2011) Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology 20(7):1520–1529. https://doi.org/10.1007/s10646-011-0733-y
Schäfer J, Castelle S, Blanc G, Dabrin A, Masson M (2010) Mercury methylation in the sediments of a macrotidal estuary (Gironde Estuary, south-west France). Estuar Coast Shelf Sci 90(2):80–92. https://doi.org/10.1016/j.ecss.2010.07.007
Shen CJ, Song DX (1979) Freshwater copepoda: calanoida. In: Fauna sinica, crustacea:1-450. Science Press, Beijing (In Chinese)
State Environmental Protection of China (1990a) Water quality-determination of total nitrogen-alkaline potassium persulfate digestion: UV spectrophotometric method. GB11894-89. Beijing, China
State Environmental Protection of China (1990b) Water quality-determination of total phosphorus: ammonium molybdate spectrophotometric method. GB 11893-89. Beijing, China
Steinberg DK, Pilskaln CH, Silver MW (1998) Contribution of zooplankton associated with detritus to sediment trap \'swimmer\' carbon in Monterey Bay, California, USA. Marine Ecol Progress 164(1):157–166. https://doi.org/10.3354/meps164157
Stewart AR, Saiki MK, Kuwabara JS, Alpers CN, Marvin-DiPasquale M, Krabbenhoft DP (2008) Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir. Can J Fish Aquat Sci 65(11):2351–2366. https://doi.org/10.1139/F08-140
Surette C, Lucotte M, Tremblay A (2006) Influence of intensive fishing on the partitioning of mercury and methylmercury in three lakes of Northern Québec. Sci Total Environ 368(1):248–261. https://doi.org/10.1016/j.scitotenv.2005.09.038
Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Stud Ecol 5(14):2772–2774. https://doi.org/10.1063/1.1615673
Tan H, He JL, Liang L, Lazoff S, Sommer J, Xiao ZF, Lindqvist O (2000) Atmospheric mercury deposition in Guizhou, China. Sci Total Environ 259(1-3):223–230. https://doi.org/10.1016/S0048-9697(00)00584-2
Tang SL, Feng XB, Qiu JR, Yin GX, Yang ZC (2007) Mercury speciation and emissions from coal combustion in Guiyang, southwest China. Environ Res 105(2):175–182. https://doi.org/10.1016/j.envres.2007.03.008
Todorova S, Driscoll CT, Matthews DA, Effler SW (2015) Zooplankton community changes confound the biodilution theory of methylmercury accumulation in a recovering mercury-contaminated lake. Environ Sci Technol 49(7):4066. https://doi.org/10.1021/es5044084
Tremblay A, Lucotte M, Rowan D (1995) Different factors related to mercury concentration in sediments and zooplankton of 73 Canadian lakes. Mercury as a Global Pollutant. Springer, Dordrecht, pp 961–970. https://doi.org/10.1007/978-94-011-0153-0_104
Tsui MT, Wang WX (2004) Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Environ Sci Technol 38(3):808–816. https://doi.org/10.1021/es034638x
United States Environmental Protection Agency (2001) Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS (Method 1630). EPA-821-R-01-020
United States Environmental Protection Agency (2002) Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry (Method 1631, Revision E). EPA-821-R-02-019
Verburg P (2014) Lack of evidence for lower mercury biomagnification by biomass dilution in more productive lakes: comment on “mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes”. Environ Sci Technol 48(17):10524–10525. https://doi.org/10.1021/es405415c
Wang Q, Feng X, Yang Y, Yan H (2011) Spatial and temporal variations of total and methylmercury concentrations in plankton from a mercury-contaminated and eutrophic reservoir in Guizhou Province, China. Environ Toxicol Chem 30(12):2739–2747. https://doi.org/10.1002/etc.696
Wang SM, Li J, Li Y, Zhu ZZ (2016) Vertical distributions and speciation of dissolved rare earth elements in Aha lake, southwestern China. J Chin Soc Rare Earths 34(04):494–503 (In Chinese)
Watras CJ, Bloom NS (1992) Mercury and methylmercury, in individual zooplankton: implications for bioaccumulation. Limnol Oceanogr 37(6):1313–1318. https://doi.org/10.4319/lo.1992.37.6.1313
Watras CJ, Back RC, Halvorsen S, Hudson RJM, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219(2-3):183–208. https://doi.org/10.1016/S0048-9697(98)00228-9
Westcott K, Kalff J (1996) Environmental factors affecting methyl mercury accumulation in zooplankton. Can J Fish Aquat Sci 53(10):2221–2228. https://doi.org/10.1139/f96-178
Xu D, Chen JA, Yang AQ, Wang JF, Xu YX (2014) Stable isotopic composition and distribution characteristics of organic carbon in the stratified column of lake Baihua, Guizhou province. Earth Environ 42(05):597–603 (In Chinese)
Yan HY, Feng XB, Li ZG, Jiang HM, He TR (2005a) A methodological development in measuring total mercury in fish using semi-closed digestion and CVAFS. Shanghai Environ Sci 33:89–92 (In Chinese)
Yan HY, Feng XB, Liang L, Shang LH, Jiang HM (2005b) Determination Of methylmercury in fish using GC-CVAFS. J Instrum Anal 24:78–80 (In Chinese)
Yan H, Feng X, Shang L, Qiu G, Dai Q, Wang S, Hou Y (2008) The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir, Guizhou province, China. Sci Total Environ 407(1):497–506. https://doi.org/10.1016/j.scitotenv.2008.08.043
Yu X, Driscoll CT, Montesdeoca MR, Evers DC, Duron M, Williams K, ... Kamman NC. (2011) Spatial patterns of mercury in biota of Adirondack, New York lakes. Ecotoxicology 20(7):1543–1554. https://doi.org/10.1007/s10646-011-0717-y
Zhang W (1999) Environmental characters and eutrophication in Hongfeng reservoir and Baihua reservoir. Guizhou Technological Publishing, Guiyang (In Chinese)
Zhang Y, Lei JH (2010) Research on the protection measures of Caohai wetland in Guizhou. The 12th China Science and Technology Association Annual Meeting (Volume I)
