Laser Additive Manufacturing- Direct Energy Deposition of Ti-15Mo Biomedical Alloy: Artificial Neural Network Based Modeling of Track Dilution

Tarun Bhardwaj1, Mukul Shukla1
1Department of Mechanical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bhardwaj, T., Shukla, M., Paul, C.P., Bindra, K.S.: Direct energy deposition: laser additive manufacturing of titanium-molybdenum alloy - parametric studies, microstructure and mechanical properties. J. Alloys Compd. 787, 1238–1248 (2019)

Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog. Mater. Sci. 54(3), 397–425 (2009)

Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mat. Sci. Eng. A. 243(1-2), 231–236 (1998)

Urena, J., Tsipas, S., Jimenez-Morales, A., Gordo, E., Detsch, R., Boccaccini, A.R.: In-vitro study of the bioactivity and cytotoxicity response of Ti surfaces modified by Nb and Mo diffusion treatments. Surf. Coat. Technol. 335, 148–158 (2018)

Sumitomo, N., Noritake, K., Hattori, T., Morikawa, K., Niwa, S., Sato, K., Niinomi, M.: Experiment study on fracture fixation with low rigidity titanium alloy. J. Mater. Sci. Mater. Med. 19(4), 1581–1586 (2008)

Zhou, Y.L., Luo, D.M.: Effects of ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications Mater. Char., 62(10), 931–937 (2011)

Oliveira, N.T.C., Guastaldi, A.C.: Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 51, 399–405 (2009)

Cardoso, F.F., Ferrandini, P.L., Lopes, E.S.N., Cremasco, A., Caram, R.: Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior. J. Mech. Behav. Biomed. Mater. 32, 31–38 (2014)

Bhardwaj, T., Shukla, M., Prasad, N.K., Paul, C.P., Bindra, K.S.: Direct laser deposition - additive manufacturing of Ti-15Mo alloy: effect of build orientation induced surface topography on corrosion and bioactivity. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00464-3

Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., Stuker, B.: Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017)

Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical thermal modeling of metal additive manufacturing by heat sink solution. Materials. 12(16), 2568 (2019a)

Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of in-process temperature in powder bed additive manufacturing considering laser power absorption, latent heat, scanning strategy, and powder packing. Materials. 12(5), 808 (2019b)

Ning, J., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages. Appl. Phys. A Mater. Sci. Process. 125, 1–11 (2019c)

Ning, J., Mirkoohi, E., Dong, Y., Sievers, D.E., Garmestani, H., Liang, S.Y.: Analytical modeling of 3D temperature distribution in selective laser melting of Ti-6Al-4V considering part boundary conditions. J. Manuf. Process. 44, 319–326 (2019d)

Mahapatra, M.M., Li, L.: Prediction of pulsed-laser powder deposits’ shape profiles using a back-propagation artificial neural network. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 222, 1567–1576 (2008)

Shukla, M., Tambe, P.B.: Predictive modelling of surface roughness and kerf widths in abrasive water jet cutting of Kevlar composites using neural network. Int. J. Mach. Mach. Mater. 8(1/2), 226–246 (2010)

Ganesh, P., Kaul, R., Paul, C.P., Tiwari, P., Rai, S.K., Prasad, R.C., Kukreja, L.M.: Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures. Mater. Sci. Eng. A. 527, 7490–7497 (2010)

Hojjatzadeh, S.M.H., Parab, N.D., Yan, W., Guo, Q., Xiong, L., Zhao, C., Qu, M., Escano, L.I., Xiao, X., Fezzaa, K., Everhart, W., Sun, T., Chen, L.: Pore elimination mechanisms during 3D printing of metals. Nat. Commun. 10(1), 3088 (2019)

Yi, H., Qi, L., Luo, J., Li, N.: Hole-defects in soluble core assisted aluminum droplet printing: metallurgical mechanisms and elimination methods. Appl. Therm. Eng. 148, 1183–1193 (2019)

Yi, H., Qi, L., Luo, J., Zhang, D., Li, H., Hou, X.: Effect of the surface morphology of solidified droplet on remelting between neighboring aluminum droplets. Int. J. Mach. Tools Manuf. 130-131, 1–11 (2018)

Yi, H., Qi, L., Luo, J., Jiang, Y., Deng, W.: Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl. Phys. Lett. 108(4), 041601 (2016)

Yi, H., Qi, L., Luo, J., Zhang, D., Li, N.: Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores. J. Mater. Process. Technol. 264, 145–154 (2019)