Is bioelectrical impedance accurate for use in large epidemiological studies?

Nutrition Journal - Tập 7 - Trang 1-7 - 2008
Mahshid Dehghan1,2, Anwar T Merchant3
1Population Health Research Institute, McMaster University, Hamilton, Canada
2Department of Medicine, McMaster University, Hamilton, Canada
3Department of Clinical Epidemiology and Biostatistics, and Population Health Research Institute, McMaster University, Hamilton, Canada

Tóm tắt

Percentage of body fat is strongly associated with the risk of several chronic diseases but its accurate measurement is difficult. Bioelectrical impedance analysis (BIA) is a relatively simple, quick and non-invasive technique, to measure body composition. It measures body fat accurately in controlled clinical conditions but its performance in the field is inconsistent. In large epidemiologic studies simpler surrogate techniques such as body mass index (BMI), waist circumference, and waist-hip ratio are frequently used instead of BIA to measure body fatness. We reviewed the rationale, theory, and technique of recently developed systems such as foot (or hand)-to-foot BIA measurement, and the elements that could influence its results in large epidemiologic studies. BIA results are influenced by factors such as the environment, ethnicity, phase of menstrual cycle, and underlying medical conditions. We concluded that BIA measurements validated for specific ethnic groups, populations and conditions can accurately measure body fat in those populations, but not others and suggest that for large epdiemiological studies with diverse populations BIA may not be the appropriate choice for body composition measurement unless specific calibration equations are developed for different groups participating in the study.

Tài liệu tham khảo

Dentali F, Sharma AM, Douketis JD: Management of hypertension in overweight and obese patients: a practical guide for clinicians. Curr Hypertens Rep. 2005, 7: 330-336. 10.1007/s11906-005-0065-5.

Womersley J: A comparison of the skinfold method with extent of 'overweight' and various weight-height relationships in the assessment of obesity. Br J Nutr. 1977, 38: 271-284. 10.1079/BJN19770088.

Buchholz AC, Bartok C, Schoeller DA: The validity of bioelectrical impedance models in clinical populations. Nutr Clin Pract. 2004, 19: 433-446. 10.1177/0115426504019005433.

Scharfetter H, Schlager T, Stollberger R, Felsberger R, Hutten H, Hinghofer-Szalkay H: Assessing abdominal fatness with local bioimpedance analysis: basics and experimental findings. Int J Obes Relat Metab Disord. 2001, 25: 502-511. 10.1038/sj.ijo.0801556.

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel GJ, Lilienthal Heitmann B, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols WJ, Pichard C: Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr. 2004, 23: 1430-1453. 10.1016/j.clnu.2004.09.012.

Deurenberg P, Deurenberg-Yap M, Schouten FJ: Validity of total and segmental impedance measurements for prediction of body composition across ethnic population groups. Eur J Clin Nutr. 2002, 56: 214-220. 10.1038/sj.ejcn.1601303.

Kyle UG, Piccoli A, Pichard C: Body composition measurements: interpretation finally made easy for clinical use. Curr Opin Clin Nutr Metab Care. 2003, 6: 387-393. 10.1097/00075197-200307000-00006.

Heyward VH, Wagner DR: Body composition and ethnicity. Applied body composition assessment. Human Kinetics. 2004, 135-172.

Deurenberg P, Deurenberg-Yap M: Validation of skinfold thickness and hand-held impedance measurements for estimation of body fat percentage among Singaporean Chinese, Malay and Indian subjects. Asia Pac J Clin Nutr. 2002, 11: 1-7. 10.1046/j.1440-6047.2002.00258.x.

Demura S, Yamaji S, Goshi F, Kobayashi H, Sato S, Nagasawa Y: The validity and reliability of relative body fat estimates and the construction of new prediction equations for young Japanese adult males. J Sports Sci. 2002, 20: 153-164. 10.1080/026404102317200864.

Evans WD, McClagish H, Trudgett C: Factors affecting the in vivo precision of bioelectrical impedance analysis. Appl Radiat Isot. 1998, 49: 485-487. 10.1016/S0969-8043(97)00061-4.

Caton JR, Mole PA, Adams WC, Heustis DS: Body composition analysis by bioelectrical impedance: effect of skin temperature. Med Sci Sports Exerc. 1988, 20: 489-491.

Battistini N, Facchini F, Bedogni G, Severi S, Fiori G, Pettener D: The prediction of extracellular and total body water from bioelectric impedance in a non-Caucasian population from central Asia. Ann Hum Biol. 1995, 22: 315-320. 10.1080/03014469500003982.

Guglielmi FW, Mastronuzzi T, Pietrini L, Panarese A, Panella C, Francavilla A: The RXc graph in evaluating and monitoring fluid balance in patients with liver cirrhosis. Ann N Y Acad Sci. 1999, 873: 105-111. 10.1111/j.1749-6632.1999.tb09456.x.

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C: Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr. 2004, 23: 1226-1243. 10.1016/j.clnu.2004.06.004.

Gualdi-Russo E, Toselli S: Influence of various factors on the measurement of multifrequency bioimpedance. Homo. 2002, 53: 1-16. 10.1078/0018-442X-00035.

Macdonald HM, New SA, Campbell MK, Reid DM: Longitudinal changes in weight in perimenopausal and early postmenopausal women: effects of dietary energy intake, energy expenditure, dietary calcium intake and hormone replacement therapy. Int J Obes Relat Metab Disord. 2003, 27: 669-676. 10.1038/sj.ijo.0802283.

Wing RR, Matthews KA, Kuller LH, Meilahn EN, Plantinga PL: Weight gain at the time of menopause. Arch Intern Med. 1991, 151: 97-102. 10.1001/archinte.151.1.97.

Xie X, Kolthoff N, Barenholt O, Nielsen SP: Validation of a leg-to-leg bioimpedance analysis system in assessing body composition in postmenopausal women. Int J Obes Relat Metab Disord. 1999, 23: 1079-1084. 10.1038/sj.ijo.0801034.

Deurenberg P, Weststrate JA, Seidell JC: Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. Br J Nutr. 1991, 65: 105-114. 10.1079/BJN19910073.

Deurenberg P, Deurenberg-Yap M: Differences in body-composition assumptions across ethnic groups: practical consequences. Curr Opin Clin Nutr Metab Care. 2001, 4: 377-383. 10.1097/00075197-200109000-00007.

Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C: Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001, 17: 248-253. 10.1016/S0899-9007(00)00553-0.

Jakicic JM, Wing RR, Lang W: Bioelectrical impedance analysis to assess body composition in obese adult women: the effect of ethnicity. Int J Obes Relat Metab Disord. 1998, 22: 243-249. 10.1038/sj.ijo.0800576.

Merz AL, Trotterm M, Peterson RR: Estimation of skeleton weight in the living. Am J Phys Anthropol. 1956, 14: 589-609. 10.1002/ajpa.1330140405.

Swinburn BA, Ley SJ, Carmichael HE, Plank LD: Body size and composition in Polynesians. Int J Obes Relat Metab Disord. 1999, 23: 1178-1183. 10.1038/sj.ijo.0801053.

Deurenberg-Yap M, Schmidt G, van Staveren WA, Deurenberg P: The paradox of low body mass index and high body fat percentage among Chinese, Malays and Indians in Singapore. Int J Obes Relat Metab Disord. 2000, 24: 1011-1017. 10.1038/sj.ijo.0801353.

Harsha DW, Frerichs RR, Berenson GS: Densitometry and anthropometry of black and white children. Hum Biol. 1978, 50: 261-280.

de Waart FG, Li R, Deurenberg P: Comparison of body composition assessments by bioelectrical impedance and by anthropometry in premenopausal Chinese women. Br J Nutr. 1993, 69: 657-664. 10.1079/BJN19930067.