Iron Uptake and Loading into Rice Grains

Rice - Tập 3 - Trang 122-130 - 2010
Khurram Bashir1, Yasuhiro Ishimaru1, Naoko K. Nishizawa1
1Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan

Tóm tắt

Iron (Fe) is an important micronutrient for living organisms. Fe deficiency severely impairs plant growth and is a widespread human dietary problem, with particularly high numbers of affected children and females. Rice (Oryza sativa) is a source of energy for more than half of the world’s population. Thus, understanding the mechanisms of Fe uptake and translocation in rice is of utmost importance in the development of rice varieties that are tolerant to low Fe availability and with high seed levels of Fe. In recent years, the mechanisms underlying Fe transport and homeostasis have been revealed, providing opportunities to increase the Fe content of rice grain. As excess Fe is toxic to cells, plants have developed sophisticated mechanisms to control Fe flow, making it difficult to alter Fe transport. Thus, choosing appropriate chelators and Fe transporters driven by appropriate promoters seems to be the key in developing rice that is tolerant to low Fe availability and which accumulates high grain levels of Fe. Many recent studies have been aimed at increasing the Fe content of rice. Here, we summarize these efforts and review recent progress in understanding the mechanisms of Fe transport.

Tài liệu tham khảo

Bashir K, Nishizawa NK. Deoxymugineic acid synthase; a gene important for Fe-acquisition and homeostasis. Plant Signal Behav. 2006;1:290–2.

Chang TT. In: Smith CW, Dilday R-H, editors. Rice: origin, history, technology, and production. Hoboken, NJ: Wiley; 2003. p. 1–25.

Ducos E, Fraysse ÅS, Boutry M. NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum. FEBS Lett. 2005;579:6791–5.

Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 2006;45:335–46.

Kobayashi T, Ogo Y, May SA, Nozoye T, Itai RN, Nakanishi H, et al. The spatial expression and regulation of transcription factors IDEF1 and IDEF2. Ann Bot. 2010. doi:10.1093/aob/mcq002.

Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 2009a;150:786–800.

Mori S, Nishizawa N. Methionine as a dominant precursor of phytosiderophores in Graminaceae: plants. Plant Cell Physiol. 1987;28:1081–92.

World Health Organization (WHO). World health report reducing risks, promoting healthy life. Geneva: WHO; 2002.