Purification and characterization of nicotianamine synthase from Fe-deficient barley roots

Kyoko Higuchi1, Kenji Kanazawa1, Naoyuki Nishizawa1, Mitsuo Chino1, Satoshi Mori1
1Laboratory of Plant nutrition and Fertilizers, Department of Agricultural Chemistry, University of Tokyo, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bienfait H F 1988 Mechanisms in Fe-efficiency reactions of higher plants. J. Plant Nutr. 11, 605–629.

Bowman W H, Tabo C W and Tabor H 1973 Spermidine biosynthesis. J. Biol. Chem. 248, 2480–2486.

Dzandu J K, Johnson J F and Wise G E 1988 Sodium Dodesyl Sulfate-Gel Electrophoresis: Staining of polypeptide using heavy metal salts. Anal. Biochem. 174, 157–167.

Fushiya S, Takahashi K, Nakatsuyama S, Sato Y, Nozoe S and Takagi S 1982 Co-occurrence of nicotianamine and avenic acids in Avena sativa and Oryza sativa. Phytochemistry 21, 1907–1908.

Kanazawa K, Higuchi K, Fushiya S, Nozoe S, Nishizawa N K, Chino M and Mori S 1994 Induction of two enzyme activities involved in the biosynthesis of mugineic acid in Fe deficient barley roots. Plant and Soil (In press).

Kawai S, Itoh K, Takagi S, Iwashita T and Nomoto K 1988a Studies on phytosiderophores: biosynthesis of mugineic acid and 2′-deoxymugineic acid in Hordeum vulgare L. var. Minorimugi. Tetrahedron Lett. 29, 1053–1056.

Kawai S, Takagi S and Sato Y 1988b Mugineic acid-family phytosiderophores in root-secretions of barley, corn and sorghum varieties. J. Plant Nutr. 11, 633–642.

Laemmli U K 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680.

Ma J F and Nomoto K 1993 Two related biosynthetic pathway of mugineic acids in Gramineous plants. Plant Physiol. 102, 373–378.

Marschner H, Römheld V and Kissel M 1987 Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol. Plant. 71, 157–172.

Mihashi S and Mori S 1989 Characterization of mugineic-acid-Fe transporter in Fe-deficient barley roots using the multi-compartment transport box method. Biol. Metals 2, 146–154.

Mino Y, Ishida T, Ota N, Inoue M, Nomoto K, Takemoto T, Tanaka H and Sugiura Y 1983 Mugineic acid-iron (III) complex: characterization for absorption and transport of iron in gramineous plants. J. Am. Chem. Soc. 105, 4671–4676.

Mori S, Hachisuka M, Kawai S, Takagi S and Nishizawa N K 1988 Peptides related to phytosiderophore secretion by Fe-deficient barley roots. J. Plant Nutr. 11, 653–662.

Mori S and Nishizawa N 1987 Methionine as a dominant precursor of phytosiderophores in graminaceae plants. Plant Cell Physiol. 28, 1081–1092.

Mori S, Nishizawa N, Kawai S, Sato S and Takagi S 1987 Dynamic state of mugineic acid and analogous phytosiderophores in Fe-deficient barley. J. Plant Nutr. 10, 1003–1011.

Mudd S H and Cantoni G L 1958 Activation of methionine for transmethylation m. The methionine-activating enzyme of bakers' yeast. J. Biol. Chem. 231, 481–492.

Nakanishi H, Okumura N, Umehara Y, Nishizawa N K, Chino M and Mori S 1993 Expression of a gene specific for iron deficiency (Ids 3) in the roots of Hordeum vulgare. Plant Cell Physiol. 34, 401–410.

Nishizawa N and Mori S 1987 The particular vesicle appearing in barley root cells and its relation to mugineic acid secretion. J. Plant Nutr. 10, 1013–1020.

Nomoto K, Yoshioka H, Arima M, Fushiya S, Takagi S and Takemoto T 1981 Structure of 2′-deoxymugineic acid, a novel amino acid possessing an iron-chelating activity. Chimia 7, 249–250.

Pajula R L, Raina A and Eloranta T 1979 Polyamine synthesis in mammalian tissues. Eur. J. Biochem. 101, 619–626.

Römheld V 1987 Different strategies for iron acquisition in higher plants. Physiol. Plant. 70, 231–234.

Römheld V and Marschner H 1986 Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol. 70, 175–180.

Rudolph A, Becker R and Scholz G 1985 The occurrence of amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochem. Physiol. Pflanzen 180, 557–563.

Samejima K and Yamada B 1982 Purification of spermidine synthase from rat ventral prostate by affinity chromatography on immobilized S-adenosyl (5′)-3-thiopropylamine. Arch. Biochem. Biophys. 216, 213–222.

Scholz G, Becker R, Pich A and Stephan U W 1992 Nicotianamine — a common constituent of strategies I and II of iron-aquicition by plants: A review. J. Plant Nutr. 15, 1647–1665.

Scholz G, Becker R, Stephan U W, Rudolph A and Pich A 1988 The regulation of iron uptake and possible function of nicotianamine in higher plants. Biochem. Physiol. Pflanzen 183, 258–269.

Shojima S, Nishizawa N K and Mori S 1989a Establishment of a cell-free system for the biosynthesis of nicotianamine. Plant Cell Physiol. 30, 673–677.

Shojima S, Nishizawa N K, Fushiya S, Nozoe S, Kumashiro T, Nagata T, Ohata T and Mori S 1989b Biosynthesis of nicotianamine in the suspension — cultured cells of tobacco (Nicotiana megalosiphon). Biol. Metals 2, 142–145.

Shojima S, Nishizawa N K, Fushiya S, Nozoe S, Irifune T and Mori S 1990 Biosynthesis of phytosiderophores. Plant Physiol. 93, 1497–1503.

Stephan U W and Scholz G 1990 Nicotianamine concentrations in iron sufficient and iron deficient sunflower and barley roots. J. Plant Physiol. 136, 631–634.

Stephan U W and Scholz G 1993 Nicotianamine: mediator of transport of iron and heavy metals in the phloem? Physiol. Plant. 88, 522–529.

Sugiura Y, Tanaka H, Mino Y, Ishida T, Ota N, Inoue M, Nomoto K, Yoshioka H and Takemoto T 1981 Structure, properties, and transport mechanism of iron (III) complex of mugineic acid, a possible phytosiderophore. J. Am. Chem. Soc. 103, 6979–6982.

Takagi S 1976 Naturally occurring iron-chelating compounds in oat- and rice-root washing. I. Activity measurement and preliminary characterization. Soil Sci. Plant Nutr. 22, 423–433.

Takagi S 1993 Production of phytosiderophores. In Iron Chelation in Plants and Soil Microorganisms. pp 111–131. Eds. L L Barton and H Hemming. Academic Press, San Diego.

Takagi S, Nomoto K and Takemoto S 1984 Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7, 469–477.

Takemoto T, Nomoto K, Fushiya S, Ouchi R, Kusano G, Hikino H, Takagi S, Matsuura Y and Kakudo M 1978 Structure of mugineic acid, a new amino acid possessing an iron-chelating activity from root washing of water-cultured Hordeum vulgare. Proc. Jpn. Acad. 54, 469–473.