Impacts of laser land leveling in rice–wheat systems of the north–western indo-gangetic plains of India

Springer Science and Business Media LLC - Tập 7 - Trang 725-738 - 2015
Jeetendra Prakash Aryal1, Meera Bhatia Mehrotra1, M. L. Jat1, Harminder Singh Sidhu2
1International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
2Borlaug Institute for South Asia (BISA), International Maize and Wheat Improvement Center (CIMMYT), Ludhiana, India

Tóm tắt

We assessed the impact of laser land leveling technology in rice-wheat (RW) systems of north-west India using data collected from household surveys in 2011. We compared crop yield and total irrigation time required per season between laser leveled (LLL) and traditionally leveled (TLL) fields. Laser leveling in rice fields reduced irrigation time by 47–69 h/ha/season and improved yield by approximately 7 % compared with traditionally leveled fields. In wheat, irrigation time was reduced by 10–12 h/ha/season and yield increased by 7–9 % in laser leveled fields. Our analysis showed that laser land leveling is a scale neutral technology, not biased towards large farmers. Farmers benefited by an additional USD 143.5/ha/year through increased yields in RW systems and reduced electricity used in laser leveled fields compared to traditionally leveled fields when estimated by using the electricity tariff equivalent to the average subsidized tariff for agricultural use. This benefit became much larger when estimated by using an electricity tariff equivalent to the average cost of its supply. Hence, assuming an average electricity tariff equivalent to the average cost of its supply in the year 2010–11 in the country, the net benefit of shifting from TLL to LLL in RW systems in the study area was USD 194 per ha per year. This large difference in benefits indicates the loss due to market distortions by subsidy in electricity and hence, is a matter of policy concern requiring further scrutiny. The RW system in a hectare of laser leveled field required 754 kWh less electricity for irrigation per year compared to a traditionally leveled field. Furthermore, if 50 % of the area under the RW system in Haryana and Punjab states were laser leveled, this would provide an additional production of 699 million kg of rice and 987 million kg of wheat, amounting to USD 385 million/year. Thus, laser leveling contributes to food security and economical use of water and energy resources.

Tài liệu tham khảo

Amarasinghe, U. A., Shah, T., & Anand, B. K. (2007). India’s Water future to 2025–2050: Business-as-usual scenario and deviations. Colombo, Sri Lanka: International Water Management Institute, IWMI Research Report 123.

Aryal, J. P., Farnworth, C. R., Khurana, R., Ray, S., & Sapkota, T. B. (2014). Gender dimensions of climate change adaptation through climate smart agricultural practices in India. In Innovation in Indian Agriculture: Ways Forward. New Delhi: Institute of Economic Growth (IEG), New Delhi, and International Food Policy Research Institute (IFPRI), Washington DC.

Aryal, J. P., Sapkota, T. B., Jat, M. L., & Bishnoi, D. K. (2015). On-Farm Economic and Environmental Impact of Zero-Tillage Wheat: a Case of North-West India. Experimental Agriculture, 51(1), 1–16.

DHBVN. (2014). Distribution & retail supply tariff approved by the Comission for the FY 2014-15. India: Dakshin Haryana Bijli Vitran Nigam (DHBVN), Haryana.

Gill, G. J. (2014). An assessment of the impact of laser-assisted precision land levelling technology as a component of climate-smart agriculture in the state of Haryana, India. New Delhi: CIMMYT-CCAFS, Internantional Maize and Wheat Improvement Center (CIMMYT).

GOI (2011). Annual report 2011-12 on the working of state power utilities & electricity departments. New Delhi: Power and Energy Division, Planning Commission, Government of India (GOI).

GOI. (2013). State of indian agriculture 2012-13. New Delhi: Ministry of Agriculture, Government of India (GOI).

HERC. (2014). Commission’s order on aggregate revenue requirement of UHBVNL & DHBVNL for their distribution & retail supply business under MYT framework for the control period FY2014-15 to FY 2016-17 and distribution and retail supply tariff for FY 2014-15. India: Haryana Electricity Regulatory Comission (HERC), Haryana.

Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G. E., & Surjan, A. (2014). Asia. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, & L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1327–1370). Cambridge: Cambridge University Press.

INCCA. (2010). India: Greenhouse Gas Emissions, 2007; . New Delhi: Indian Network for Climate Change Assessment (INCCA), Ministry of Environment and Forests, Government of India.

Jat, M.L. (2012). Laser Land Leveling in India: A Success. In Presentation given at a conference on “Lessons Learned from Postharvest and Mechanization Projects, and Ways Forward.” Asian Development Bank’s Postharvest Projects' Post-production Workgroup of the Irrigated Rice Research Consortium (IRRC), held at the International Rice Research Institute, Los Banos, Manila, Philippines, May 22-24.

Jat, M. L., Chandna, P., Gupta, R., Sharma, S. K., & Gill, M. A. (2006). Laser land leveling: A precursor technology for resource conservation. New Delhi: Rice-Wheat Consortium for the Indo-Gangetic Plains. Rice-Wheat Consortium Technical Bulletin Series 7.

Joshi, P., & Tyagi, N. (1994). Salt-affected and waterlogged soils in India: a review. In M. Svendsen & A. Gulati (Eds.), Strategic change in Indian irrigation (pp. 237–252). New Delhi: IFPRI/ICAR.

Kahlown, M. A., Raoof, A., & Hanif, M. (2000). Rice yield as affected by plant densities. Mona Experimental Project Bhalwal, Report No. 238.

Krishna, V., Bhatia, M., & Teufel, N. (2011). Characterizing the Cereal Systems and Identifying the Potential of Conservation Agriculture in NW India, Nepal Terai and NW Bangladesh: Baseline Village Survey Report. CIMMYT, India.

Kulkarni, H., Shankar, P. S. V., & Krishnan, S. (2011). India’s Groundwater Challenge and the Way Forward. Economic and Political Weekly, 46(02), 37–45.

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New York: Oxford University Press.

Perveen, S., Krishnamurthy, C. K., Sidhu, R. S., Vatta, K., Kaur, B., Modi, V., & Lall, U. (2012). Restoring Groundwater in Punjab, India’s Breadbasket: Finding Agricultural Solutions for Water Sustainability. New York: Columbia Water Center, Earth Institute, Columbia University.

PSERC. (2011). Tariff rates 2010-11. India: Punjab State Electricity Regulatory Comission (PSERC), Punjab.

Rickman, J. F. (2002). Manual for laser land leveling (p. 24). Rice-Wheat Consortium Technical Bulletin Series 5. New Delhi: Rice-Wheat Consortium for the Indo-Gangetic Plains.

UN-Water. (2013). Water for Food. http://www.unwater.org/fileadmin/user_upload/watercooperation2013/doc/Factsheets/water_for_food.pdf. Accessed 15 Aug 2013.

World Bank. (2013). Data.http://data.worldbank.org/indicator/ER.H2O.FWAG.ZS. Accessed 15 Aug 2013.