Identification of GmGPATs and their effect on glycerolipid biosynthesis through seed-specific expression in soybean
Tóm tắt
Tài liệu tham khảo
Feng L, Burton JW, Carter TE, Pantalone VR (2004) Recurrent half-sib selection with testcross evaluation for increased oil content in soybean. Crop Sci 44:63–66. https://doi.org/10.2135/cropsci2004.6300
Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13:211–221. https://doi.org/10.1111/pbi.12249
Sedivy EJ, Wu F, Hanzawa Y (2017) Soybean domestication: the origin, genetic architecture and molecular bases. New Phytol 214:539–553. https://doi.org/10.1111/nph.14418
Shen Y, Liu J, Geng H, Zhang J, Liu Y, Zhang H, Xing S, Du J, Ma S, Tian Z (2018) De novo assembly of a Chinese soybean genome. Sci China Life Sci 61:871–884. https://doi.org/10.1007/s11427-018-9360-0
Xie M, Chung CYL, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AKY, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM (2019) A reference-grade wild soybean genome. Nat Commun 10:1216. https://doi.org/10.1038/s41467-019-09142-9
Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020) Pan-genome of wild and cultivated soybeans. Cell 182:162–176. https://doi.org/10.1016/j.cell.2020.05.023
Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wan W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414. https://doi.org/10.1038/nbt.3096
Zhang D, Zhang H, Hu Z, Chu S, Yu K, Lv L, Yang Y, Zhang X, Chen X, Kan G, Tang Y, An YQC, Yu D (2019) Artificial selection on GmOLEO1 contributes to the increase in seed oil during soybean domestication. PLoS Genet 15:e1008267. https://doi.org/10.1371/journal.pgen.1008267
Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L (2016) An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol 171:878–893. https://doi.org/10.1104/pp.16.00315
Hatanaka T, Serson W, Li RZ, Armstrong P, Yu KS, Pfeiffer T, Li XL, Hildebrand D (2016) A Vernonia diacylglycerol acyltransferase can increase renewable oil production. J Agric Food Chem 64:7188–7194. https://doi.org/10.1021/acs.jafc.6b02498
Hatanaka T, Tomita Y, Matsuoka D, Sasayama D, Fukayama H, Azuma T, Soltani Gishini MF, Hildebrand D (2022) Different acyl-CoA: diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation. J Exp Bot 73:3030–3043. https://doi.org/10.1093/jxb/erac084
Chen G, Xu Y, Siloto RMP, Caldo KMP, Vanhercke T, Tahchy AE, Niesner N, Chen Y, Mietkiewska E, Weselake RJ (2017) High-performance variants of plant diacylglycerol acyltransferase 1 generated by directed evolution provide insights into structure function. Plant J 92:167–177. https://doi.org/10.1111/tpj.13652
McIntyre TM, Chamberlain BK, Webster RE, Bell RM (1977) Mutants of Escherichia coli defective in membrane phospholipid synthesis. Effects of cessation and reinitiation of phospholipid synthesis on macromolecular synthesis and phospholipid turnover. J Biol Chem 252:4487–4493. https://doi.org/10.1128/jb.120.1.227-233.1974
Lindner SE, Sartain MJ, Hayes K, Harupa A, Moritz RL, Kappe SHI, Vaughan AM (2014) Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver-stage development. Mol Microbiol 91:679–693. https://doi.org/10.1111/mmi.12485
Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J (2003) Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15:1872–1887. https://doi.org/10.1105/tpc.012427
Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155:851–865. https://doi.org/10.1104/pp.110.169482
Lei J, Miao Y, Lan Y, Han X, Liu H, Gan Y, Niu L, Wang Y, Zheng Z (2018) A novel complementation assay for quick and specific screen of genes encoding glycerol-3-phosphate acyltransferases. Front Plant Sci 9:353. https://doi.org/10.3389/fpls.2018.00353
Livak KJ, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51:635–640. https://doi.org/10.1194/jlr.D001065
Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771. https://doi.org/10.1021/bi982805d
Caldo KMP, Acedo JZ, Panigrahi R, Vederas JC, Weselake RJ, Lemieux MJ (2017) Diacylglycerol acyltransferase 1 is regulated by its N-terminal domain in response to allosteric effectors. Plant Physiol 175:667–680. https://doi.org/10.1104/pp.17.00934
Morlino GB, Tizzani L, Fleer R, Frontali L, Bianchi MM (1999) Inducible amplification of gene copy number and heterologous protein production in the yeast kluyveromyces lactis. Appl Environ Microb 65:4808–4813. https://doi.org/10.1128/AEM.65.11.4808-4813.1999
Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D (2012) Recombinant Protein Production in Yeasts. In: Lorence A (ed) Recombinant Gene Expression, Method Mol Biol, 824. Humana Press, Totowa, pp 329–358. https://doi.org/10.1007/978-1-61779-433-9_17
Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160:638–652. https://doi.org/10.1104/pp.112.201996