Soybean oil biosynthesis: role of diacylglycerol acyltransferases
Tóm tắt
Diacylglycerol acyltransferase (DGAT) catalyzes the acyl-CoA-dependent acylation of sn-1,2-diacylglycerol to form seed oil triacylglycerol (TAG). To understand the features of genes encoding soybean (Glycine max) DGATs and possible roles in soybean seed oil synthesis and accumulation, two full-length cDNAs encoding type 1 diacylglycerol acyltransferases (GmDGAT1A and GmDGAT1B) were cloned from developing soybean seeds. These coding sequences share identities of 94 % and 95 % in protein and DNA sequences. The genomic architectures of GmDGAT1A and GmDGAT1B both contain 15 introns and 16 exons. Differences in the lengths of the first exon and most of the introns were found between GmDGAT1A and GmDGAT1B genomic sequences. Furthermore, detailed in silico analysis revealed a third predicted DGAT1, GmDGAT1C. GmDGAT1A and GmDGAT1B were found to have similar activity levels and substrate specificities. Oleoyl-CoA and sn-1,2-diacylglycerol were preferred substrates over vernoloyl-CoA and sn-1,2-divernoloylglycerol. Both transcripts are much more abundant in developing seeds than in other tissues including leaves, stem, roots, and flowers. Both soybean DGAT1A and DGAT1B are highly expressed at developing seed stages of maximal TAG accumulation with DGAT1B showing highest expression at somewhat later stages than DGAT1A. DGAT1A and DGAT1B show expression profiles consistent with important roles in soybean seed oil biosynthesis and accumulation.