High prevalence of Arginine to Glutamine Substitution at 98, 141 and 162 positions in Troponin I (TNNI3) associated with hypertrophic cardiomyopathy among Indians

Springer Science and Business Media LLC - Tập 13 - Trang 1-8 - 2012
Deepa Selvi Rani1,2, Pratibha Nallari2, Singh Priyamvada1, Calambur Narasimhan3, Lalji Singh1,4,5, Kumarasamy Thangaraj1
1Centre for Cellular and Molecular Biology (CSIR), Hyderabad, India
2Department of Genetics, Osmania University, Hyderabad, India
3Department of Cardiology, CARE Hospitals, Hyderabad, India
4Genome Foundation, Hyderabad, India
5Banaras Hindu University, Varanasi, India

Tóm tắt

Troponin I (TNNI3) is the inhibitory subunit of the thin filament regulatory complex Troponin, which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. Mutations (2-7%) in this gene had been reported in hypertrophic cardiomyopathy patients (HCM). However, the frequencies of mutations and associated clinical presentation have not been established in cardiomyopathy patients of Indian origin, hence we have undertaken this study. We have sequenced all the exons, including the exon-intron boundaries of TNNI3 gene in 101 hypertrophic cardiomyopathy patients (HCM), along with 160 healthy controls, inhabited in the same geographical region of southern India. Our study revealed a total of 16 mutations. Interestingly, we have observed Arginine to Glutamine (R to Q) mutation at 3 positions 98, 141 and 162, exclusively in HCM patients with family history of sudden cardiac death. The novel R98Q was observed in a severe hypertrophic obstructive cardiomyopathy patient (HOCM). The R141Q mutation was observed in two familial cases of severe asymmetric septal hypertrophy (ASH++). The R162Q mutation was observed in a ASH++ patient with mean septal thickness of 29 mm, and have also consists of allelic heterogeneity by means of having one more synonymous (E179E) mutation at g.4797: G → A: in the same exon 7, which replaces a very frequent codon (GAG: 85%) with a rare codon (GAA: 14%). Screening for R162Q mutation in all the available family members revealed its presence in 9 individuals, including 7 with allelic heterogeneity (R162Q and E179E) of which 4 were severely affected. We also found 2 novel SNPs, (g.2653; G → A and g.4003 C → T) exclusively in HCM, and in silico analysis of these SNPs have predicted to cause defect in recognition/binding sites for proteins responsible for proper splicing. Our study has provided valuable information regarding the prevalence of TNNI3 mutations in Indian HCM patients and its risk assessment, these will help in genetic counseling and to adopt appropriate treatment strategies.

Tài liệu tham khảo

Maron BJ: Hypertrophic cardiomyopathy. A systematic review. JAMA. 2002, 287: 1308-1320. 10.1001/jama.287.10.1308.

Bhavsar PK, Brand NJ, Yacoub MH, Barton PJR: Isolation and characterization of the human cardiac troponin I gene (TNNI3). Genomics. 1996, 35: 11-23. 10.1006/geno.1996.0317.

Mogensen J, Murphy RT, Kubo T, Bahl A, Moon JC, Klausen IC, Elliott PM, McKenna WJ: Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004, 44: 2315-2325. 10.1016/j.jacc.2004.05.088.

Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T: Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997, 16: 379-382. 10.1038/ng0897-379.

Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE: Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circul. 2002, 105: 446-451. 10.1161/hc0402.102990.

Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, Rai TS, Khullar M, Soares P, Bahl A, Tharkan JM, Vaideeswar P, Rathinavel A, Narasimhan C, Ayapati DR, Ayub Q, Mehdi SQ, Oppenheimer S, Richards MB, Price AL, Patterson N, Reich D, Singh L, Tyler-Smith C, Thangaraj K: A common MYBPC3 cardiac myosin binding protein C variant associated with cardiomyopathies in South Asia. Nat Genet. 2009, 41: 187-191. 10.1038/ng.309.

The International HapMap Consortium: A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007, 449: 851-861. 10.1038/nature06258.

van den Wijngaard A, Volders P, van Tintelen JP, Jongbloed JDH, van den Berg MP, Lekanne Deprez RH, Mannens MMAM, Hofmann N, Slegtenhorst M, Dooijes D, Michels M, Arens Y, Jongbloed R, Smeets BJM: Recurrent and founder mutations in the Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy. Neth Heart J. 2011, 19: 344-351. 10.1007/s12471-011-0135-z.

van Driest SL, Ellsworth EG, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ: Prevalence and spectrum of thin filament mutations in an outpatient referral population with hypertrophic cardiomyopathy. Circulation. 2003, 108: 445-451. 10.1161/01.CIR.0000080896.52003.DF.

D’Onofrio G: Expression patterns and gene distribution in the human genome. Gene. 2002, 300: 155-160. 10.1016/S0378-1119(02)01048-X.

Shapiro MB, Senapathy P: RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987, 15: 7155-7174. 10.1093/nar/15.17.7155.

Rani DS, Carlus SJ, Poongothai J, Jyothi A, Pavani K, Gupta NJ, Reddy AG, Rajan MM, Rao K, Chakravarty B, Singh L, Thangaraj K: CAG repeat variation in the mtDNA polymerase gamma is not associated with oligo-asthenozoospermia. Int J Androl. 2009, 32: 647-655. 10.1111/j.1365-2605.2008.00919.x.

The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2350/13/69/prepub