High-performance lithium metal battery realized by regulating Li+ flux distribution on artificial-solid-electrolyte-interphase functionalized 3D carbon framework-Li anode

Materials Today Physics - Tập 24 - Trang 100672 - 2022
X. Shi1, Y. Qiao1, C. Xing2, Y. Zhang1, J. Liu3, Y. Wang1, G. Wang1, X. Liu2, L. Li1
1State Key Laboratory for Mechanical Behavior of Materials, China
2Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan, Shanxi, 030001, China
3Instrument Analysis Center of Xi’an Jiaotong University, Xi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shaanxi, 710049, China

Tài liệu tham khảo

Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115

Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16

Liu, 2018, Advancing lithium metal batteries, Joule, 2, 833, 10.1016/j.joule.2018.03.008

Zhang, 2020, Towards practical lithium-metal anodes, Chem. Soc. Rev., 49, 3040, 10.1039/C9CS00838A

Peled, 1997, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, J. Electrochem. Soc., 144, 208, 10.1149/1.1837858

Enze, 1986, The distribution function of surface charge density with respect to surface curvature, J. Phys. D Appl. Phys., 19, 1, 10.1088/0022-3727/19/1/005

Peled, 1979, The electrochemical behavior of alkali-and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc., 126, 2047, 10.1149/1.2128859

Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A: At., Mol., Opt. Phys., 42, 7355, 10.1103/PhysRevA.42.7355

Sand, 1901, On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1, 45, 10.1080/14786440109462590

Chen, 2021, Review on Li deposition in working Batteries: from nucleation to early growth, Adv. Mater., 33, 2004128, 10.1002/adma.202004128

Qin, 2021, Improving the durability of lithium-metal anode via in situ constructed multilayer SEI, ACS Appl. Mater. Interfaces, 13, 49445, 10.1021/acsami.1c12393

Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526

Wu, 2021, The formation of LiAl5O8 nanowires from bulk Li-Al alloy enables dendrite-free Li metal batteries, Mater. Today Phys., 18, 100395, 10.1016/j.mtphys.2021.100395

Lin, 2021, Dendrite-free and ultra-long life lithium metal anode enabled via a three-dimensional ordered porous nanostructure, ACS Appl. Mater. Interfaces, 13, 41744, 10.1021/acsami.1c12576

Cui, 2020, A Highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase, Adv. Mater., 32, 1906427, 10.1002/adma.201906427

Wu, 2020, Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries, ACS Energy Lett., 5, 1644, 10.1021/acsenergylett.0c00804

Xue, 2018, A Hierarchical silver nanowire graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes, Adv. Mater., 30, 1804165, 10.1002/adma.201804165

Shi, 2021, Tortuosity modulation toward high-energy and high-power lithium metal batteries, Adv. Energy Mater., 11, 2003663, 10.1002/aenm.202003663

Yamada, 2019, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy, 4, 269, 10.1038/s41560-019-0336-z

Jin, 2021, Robust cycling of ultrathin Li metal enabled by nitrate preplanted Li powder composite, Adv. Energy Mater., 11, 2003769, 10.1002/aenm.202003769

Boyle, 2021, Corrosion of lithium metal anodes during calendar ageing and its microscopic origins, Nat. Energy, 6, 487, 10.1038/s41560-021-00787-9

Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0

Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 154104, 10.1063/1.3382344

Blochl, 1994, Projector augmented-wave method, Phys. Rev. B, 50, 17953, 10.1103/PhysRevB.50.17953

Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758

Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Mills, 1994, Quantum and thermal eff'ects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett., 72, 1124, 10.1103/PhysRevLett.72.1124

Zhang, 2017, Fluoroethylene Carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989

Salvatierra, 2018, Suppressing Li metal dendrites through a solid Li-Ion backup layer, Adv. Mater., 30, 1803869, 10.1002/adma.201803869

Shi, 2019, Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries, Adv. Mater., 31, 1807131, 10.1002/adma.201807131

Wang, 2020, An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes, Adv. Energy Mater., 10, 1903843, 10.1002/aenm.201903843

Zhang, 2019, Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries, Nat. Commun., 10, 3543, 10.1038/s41467-019-11544-8

Zhao, 2019, Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries, J. Matter. Chem. A, 7, 15871, 10.1039/C9TA04240G

Thenuwara, 2020, Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase, ACS Energy Lett., 5, 2411, 10.1021/acsenergylett.0c01209

Parimalam, 2017, Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6, J. Phys. Chem. C, 41, 22733, 10.1021/acs.jpcc.7b08433

Yang, 2021, Formation mechanism of the solid electrolyte interphase in different ester electrolytes, J. Mater. Chem., 9, 19664, 10.1039/D1TA02615A

Luo, 2021, Electrolyte design for lithium metal anode-based batteries toward extreme temperature application, Adv. Sci., 8, 2101051, 10.1002/advs.202101051

Zhang, 2017, Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes, Angew. Chem. Int. Ed., 56, 7764, 10.1002/anie.201702099

Yan, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10

Bieker, 2015, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode, Phys. Chem. Chem. Phys., 17, 8670, 10.1039/C4CP05865H

Liu, 2020, Design strategies toward achieving high-performance [email protected] electrode materials, Mater. Today Phys., 13, 100197, 10.1016/j.mtphys.2020.100197

Ma, 2021, vol. 17, 2007142

Zhang, 2017, Columnar lithium metal anodes, Angew. Chem. Int. Ed., 56, 14207, 10.1002/anie.201707093

Wang, 2020, Building artificial solid electrolyte interphase with uniform intermolecular ionic bonds toward dendrite free lithium metal anodes, Adv. Funct. Mater., 30, 2002414, 10.1002/adfm.202002414