High-performance lithium metal battery realized by regulating Li+ flux distribution on artificial-solid-electrolyte-interphase functionalized 3D carbon framework-Li anode
Tài liệu tham khảo
Janek, 2016, A solid future for battery development, Nat. Energy, 1, 16141, 10.1038/nenergy.2016.141
Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Peled, 1997, Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes, J. Electrochem. Soc., 144, 208, 10.1149/1.1837858
Enze, 1986, The distribution function of surface charge density with respect to surface curvature, J. Phys. D Appl. Phys., 19, 1, 10.1088/0022-3727/19/1/005
Peled, 1979, The electrochemical behavior of alkali-and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc., 126, 2047, 10.1149/1.2128859
Chazalviel, 1990, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A: At., Mol., Opt. Phys., 42, 7355, 10.1103/PhysRevA.42.7355
Sand, 1901, On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid, Lond. Edinb. Dublin Philos. Mag. J. Sci., 1, 45, 10.1080/14786440109462590
Chen, 2021, Review on Li deposition in working Batteries: from nucleation to early growth, Adv. Mater., 33, 2004128, 10.1002/adma.202004128
Qin, 2021, Improving the durability of lithium-metal anode via in situ constructed multilayer SEI, ACS Appl. Mater. Interfaces, 13, 49445, 10.1021/acsami.1c12393
Li, 2016, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Adv. Mater., 28, 1853, 10.1002/adma.201504526
Wu, 2021, The formation of LiAl5O8 nanowires from bulk Li-Al alloy enables dendrite-free Li metal batteries, Mater. Today Phys., 18, 100395, 10.1016/j.mtphys.2021.100395
Lin, 2021, Dendrite-free and ultra-long life lithium metal anode enabled via a three-dimensional ordered porous nanostructure, ACS Appl. Mater. Interfaces, 13, 41744, 10.1021/acsami.1c12576
Cui, 2020, A Highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase, Adv. Mater., 32, 1906427, 10.1002/adma.201906427
Wu, 2020, Mesoporous silica reinforced hybrid polymer artificial layer for high-energy and long-cycling lithium metal batteries, ACS Energy Lett., 5, 1644, 10.1021/acsenergylett.0c00804
Xue, 2018, A Hierarchical silver nanowire graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes, Adv. Mater., 30, 1804165, 10.1002/adma.201804165
Shi, 2021, Tortuosity modulation toward high-energy and high-power lithium metal batteries, Adv. Energy Mater., 11, 2003663, 10.1002/aenm.202003663
Yamada, 2019, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy, 4, 269, 10.1038/s41560-019-0336-z
Jin, 2021, Robust cycling of ultrathin Li metal enabled by nitrate preplanted Li powder composite, Adv. Energy Mater., 11, 2003769, 10.1002/aenm.202003769
Boyle, 2021, Corrosion of lithium metal anodes during calendar ageing and its microscopic origins, Nat. Energy, 6, 487, 10.1038/s41560-021-00787-9
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 154104, 10.1063/1.3382344
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758, 10.1103/PhysRevB.59.1758
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Mills, 1994, Quantum and thermal eff'ects in H2 dissociative adsorption: evaluation of free energy barriers in multidimensional quantum systems, Phys. Rev. Lett., 72, 1124, 10.1103/PhysRevLett.72.1124
Zhang, 2017, Fluoroethylene Carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27, 1605989, 10.1002/adfm.201605989
Salvatierra, 2018, Suppressing Li metal dendrites through a solid Li-Ion backup layer, Adv. Mater., 30, 1803869, 10.1002/adma.201803869
Shi, 2019, Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries, Adv. Mater., 31, 1807131, 10.1002/adma.201807131
Wang, 2020, An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes, Adv. Energy Mater., 10, 1903843, 10.1002/aenm.201903843
Zhang, 2019, Anode interfacial layer formation via reductive ethyl detaching of organic iodide in lithium-oxygen batteries, Nat. Commun., 10, 3543, 10.1038/s41467-019-11544-8
Zhao, 2019, Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries, J. Matter. Chem. A, 7, 15871, 10.1039/C9TA04240G
Thenuwara, 2020, Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase, ACS Energy Lett., 5, 2411, 10.1021/acsenergylett.0c01209
Parimalam, 2017, Decomposition reactions of anode solid electrolyte interphase (SEI) components with LiPF6, J. Phys. Chem. C, 41, 22733, 10.1021/acs.jpcc.7b08433
Yang, 2021, Formation mechanism of the solid electrolyte interphase in different ester electrolytes, J. Mater. Chem., 9, 19664, 10.1039/D1TA02615A
Luo, 2021, Electrolyte design for lithium metal anode-based batteries toward extreme temperature application, Adv. Sci., 8, 2101051, 10.1002/advs.202101051
Zhang, 2017, Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes, Angew. Chem. Int. Ed., 56, 7764, 10.1002/anie.201702099
Yan, 2016, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy, 1, 16010, 10.1038/nenergy.2016.10
Bieker, 2015, Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode, Phys. Chem. Chem. Phys., 17, 8670, 10.1039/C4CP05865H
Liu, 2020, Design strategies toward achieving high-performance [email protected] electrode materials, Mater. Today Phys., 13, 100197, 10.1016/j.mtphys.2020.100197
Ma, 2021, vol. 17, 2007142
Zhang, 2017, Columnar lithium metal anodes, Angew. Chem. Int. Ed., 56, 14207, 10.1002/anie.201707093