High nitrogen composition–induced low interfacial roughness of GaAs 0.978 N 0.022 /GaAs multiple quantum wells grown through solid-source molecular beam epitaxy

Materials Research Bulletin - Tập 88 - Trang 242-247 - 2017
Mahitosh Biswas1, Binita Tongbram1, Nilesh Shinde2, Roshan Lal Makkar3, Anuj Bhatnagar3, Subhananda Chakrabarti2
1Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
2Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
3Society for Applied Microwave Electronics Engineering & Research, Indian Institute of Technology Campus, Mumbai 400076, India

Tài liệu tham khảo

Weyers, 1993, Growth of GaAsN alloys by low-pressure metalorganic chemical vapor deposition using plasma-cracked NH3, Appl. Phys. Lett., 62, 1396, 10.1063/1.108691

S. Kurtz, S.W. Johnston, J.F. Geisz, D.J. Friedman, A.J. Ptak. Effect of nitrogen concentration on the performance of GaInNAs solar cells, 31st IEEE PVSC (2005).

Gwo, 2001, Enhancement of the direct optical transition in nanocrystallized GaAsN alloys, Phys. Rev. B, 64, 113312, 10.1103/PhysRevB.64.113312

Neugebauer, 1994, Electronic structure and phase stability of GaAs1-xNx alloys, Phys. Rev. B, 51, 10568, 10.1103/PhysRevB.51.10568

Sun, 2004, Incorporation of N into GaAsN under N overpressure and underpressure conditions, Jpn. J. Appl. Phys., 43, 2409, 10.1143/JJAP.43.2409

Jin, 2002, Metalorganic molecular beam epitaxy of (In)GaAsN with dimethylhydrazine, J. Appl. Phys., 91, 56, 10.1063/1.1419206

Kurtz, 2002, Evaluation of NF3 versus dimethylhydrazine as N sources for GaAsN, J. Cryst. Growth, 234, 323, 10.1016/S0022-0248(01)01712-2

Ougazzaden, 1997, Metal organic vapor phase epitaxy growth of GaAsN on GaAs using dimethylhydrazine and tertiarybutylarsine, Appl. Phys. Lett., 70.21, 2861, 10.1063/1.119025

Pan, 2000, Kinetic modeling of N incorporation in GaInNAs growth by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett., 77, 214, 10.1063/1.126928

Zhongzhe, 2003, Incorporation of N into GaAsN under N overpressure and underpressure conditions, J. Appl. Phys., 94, 1069, 10.1063/1.1582554

Ellmers, 1999, Ultrafast (Galn)(NAs)/GaAs vertical-cavity surface-emitting laser for the 1.3m wavelength regime, Appl. Phys. Lett., 74, 2271, 10.1063/1.123821

Kondow, 1998, J. Cryst. Growth, 188, 255, 10.1016/S0022-0248(98)00060-8

Marzari, 1994, Structure and phase stability of Ga x In 1- x P solid solutions from computational alchemy, Phys. Rev. Lett., 72, 4001, 10.1103/PhysRevLett.72.4001

Adamcyk, 2002, Comparison of strain relaxation in InGaAsN and InGaAs thin films, Appl. Phys. Lett., 80, 4357, 10.1063/1.1485124

Ong, 2016, Controlling the thermal conductance of graphene/h-BN lateral interface with strain and structure engineering, Phys. Rev. B, 93, 075406, 10.1103/PhysRevB.93.075406

Zhu, 2015, Resolving anomalous strain effects on two-dimensional phonon flows: the cases of graphene, boron nitride, and planar superlattices, Phys. Rev. B, 91, 205429, 10.1103/PhysRevB.91.205429

Liu, 2016, Topological defects at the graphene/h-BN interface abnormally enhance its thermal conductance, Nano Lett., 16, 4954, 10.1021/acs.nanolett.6b01565

Zhu, 2016, Phonons, localization, and thermal conductivity of diamond nanothreads and amorphous graphene, Nano Lett., 16, 4763, 10.1021/acs.nanolett.6b00557

Berger, 1988, Role of strain and growth conditions on the growth front profile of InxGa1-xAs on GaAs during the pseudomorphic growth regime, Appl. Phys. Lett., 53, 684, 10.1063/1.99850

Gilet, 1999, Growth and characterization of thick GaAsN epilayers and GaInNAs/GaAs multiquantum wells, Phys. Stat. Sol. (a), 176, 279, 10.1002/(SICI)1521-396X(199911)176:1<279::AID-PSSA279>3.0.CO;2-Z

Cho, 1999, High resolution x-ray analysis of pseudomorphic InGaN/GaN multiple quantum wells: influence of Si doping concentration, J. Appl. Phys., 85, 3006, 10.1063/1.369620

Kwon, 1999, Structural and optical characteristics of InxGa1-xN/GaN multiple quantum wells with different In compositions, Appl. Phys. Lett., 75, 2545, 10.1063/1.125072

Zhang, 2005, Influence of dislocations on photoluminescence of InGaN/GaN multiple quantum wells, Appl. Phys. Lett., 87, 071908, 10.1063/1.2012531

Dong, 2015, Effect of potential barrier height on the carrier transport in InGaAs/GaAsP multi-quantum wells and photoelectric properties of laser diode, RSC Adv., 5, 75211, 10.1039/C5RA12905B

T.-C. Wen, S. C. Lee, W.-I. Lee, Proceedings of SPIE, 4278 (2001) 141-149.

Li, 2001, Origin of improved luminescence efficiency after annealing of Ga (In) NAs materials grown by molecular-beam epitaxy, Appl. Phys. Lett., 79, 1094, 10.1063/1.1396316

Spruytte, 2001, Incorporation of nitrogen in nitride-arsenides: origin of improved luminescence efficiency after anneal, J. Appl. Phys., 89, 4401, 10.1063/1.1352675

Dung, 1986, Origin and formation mechanism of macroscopic defects in GaAs films grown by molecular beam epitaxy, Phys. Stat. Sol. (a), 97.1, 103, 10.1002/pssa.2210970107

H. Sakaki, J.C. Woo, N. Yokoyama, Y. Harayama, Proceedings of the Nineteenth International Symposium on Gallium Arsenide and Related Compounds (Eds. F. Hagasawa and Y. Takeda), 1997, p. 559.

Chen, 2015

2005, 28

Zheng, 1994, Interface segregation and clustering in strained-layer InGaAs/GaAs heterostructures studied by cross-sectional scanning tunneling microscopy, Phys. Rev. Lett., 73.2, 368, 10.1103/PhysRevLett.73.368

Prokofyeva, 1998, Raman studies of nitrogen incorporation in GaAs1-xNx, Appl. Phys. Lett., 73, 1409, 10.1063/1.121959

Bösker, 1998, Diffusion of nitrogen from a buried doping layer in gallium arsenide revealing the prominent role of As interstitials, Phys. Rev. Lett., 81, 3443, 10.1103/PhysRevLett.81.3443

Tournié, 2002, Mechanisms affecting the photoluminescence spectra of GaInNAs after post-growth annealing, Appl. Phys. Lett., 80, 4148, 10.1063/1.1481978