Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance

BioMagnetic Research and Technology - Tập 4 - Trang 1-12 - 2006
Alexander Pazur1, Valentina Rassadina2, Jörg Dandler1, Jutta Zoller1
1Department Biologie I Universität München – Bereich Botanik, München, Germany
2Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus Academicheskaya 27, Belarus, Germany

Tóm tắt

The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments. Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca2+. Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated. The shoots of plants exposed to Ca2+-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca2+-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca2+-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a retardation of the originally Ca2+-ICR exposed plants compared to control cultures lasting several weeks, with an increased tendency for dehydration. A direct influence of the applied MF and EMF is discussed affecting Ca2+ levels via the ICR mechanism. It influences the available Ca2+ and thereby regulatory processes. Theoretical considerations on molecular level focus on ionic interactions with water related to models using quantum electrodynamics.

Tài liệu tham khảo

Nickolaenko AP, Hayakawa M: Natural electromagnetic pulses in the ELF range. Geophys Res Let. 1998, 25: 3103-3106. 10.1029/98GL01699.

World Health Organization: Extremely Low Frequency (ELF) Fields. Environmental Health Criteria, 35, WHO, Geneva. 1984

Bersani F, Marinelli F, Ognibene A, Matteucci A, Cecchi S, Santi S, Squarzoni S, Maraldi NM: Intramembrane protein distribution in cell cultures is affected by 50 Hz pulsed magnetic fields. Bioelectromagnetics. 1997, 18: 463-469. 10.1002/(SICI)1521-186X(1997)18:7<463::AID-BEM1>3.0.CO;2-0.

Tokalov SV, Gutzeit HO: Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ Res. 2004, 94: 145-151. 10.1016/S0013-9351(03)00088-4.

Blackman CF, Benane SG, House DE, Joines WT: Effects of ELF (1–120 Hz) and modulated (50 Hz) RF fields on the efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics. 1985, 6: 1-11. 10.1002/bem.2250060102.

Lai H, Singh NP: Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 1997, 18: 156-65. 10.1002/(SICI)1521-186X(1997)18:2<156::AID-BEM8>3.0.CO;2-1.

Rosen LA, Barber I, Lyle DB: A 0.5 G, 60 Hz magnetic field suppresses melatonin production in pinealocytes. Bioelectromagnetics. 1998, 19: 123-7. 10.1002/(SICI)1521-186X(1998)19:2<123::AID-BEM11>3.0.CO;2-R.

Davies MS: Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results. Bioelectromagnetics. 1996, 17: 154-61. 10.1002/(SICI)1521-186X(1996)17:2<154::AID-BEM10>3.0.CO;2-S.

Khizhenkov PK, Netsvetov MV, Kislyak TP, Dobritsa NV: A change in permeability of membranes of barley seeds' cells as a function of the frequency of an alternating magnetic field. Dopov Nats Akad NaukUkr. 2001, 2001: 179-180.

Liboff AR: Electric-field ion cyclotron resonance. Bioelectromagnetics. 1997, 18: 85-7. 10.1002/(SICI)1521-186X(1997)18:1<85::AID-BEM13>3.0.CO;2-P.

Binhi VN, Savin AV: Effects of weak magnetic fields on biological systems: physical aspects. Physics-Uspekhi (Uspekhi Fizicheskikh Nauk). 2003, 46: 259-91. 10.1070/PU2003v046n03ABEH001283.

Adair RK: A physical analysis of the ion parametric resonance model. Bioelectromagnetics. 1998, 19: 181-91. 10.1002/(SICI)1521-186X(1998)19:3<181::AID-BEM6>3.0.CO;2-Y.

Giudice Del, Fleischmann M, Preparata G, Talpo G: On the "unreasonable" effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics. 2002, 23: 522-530. 10.1002/bem.10046.

Smith SD, McLeod BR, Liboff AR: Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations. Bioelectrochem Bioenerg. 1995, 38: 161-7. 10.1016/0302-4598(95)01797-I.

Medvedev SS: Calcium signaling system in plants. Russian J Plant Physiol. 2005, 52: 249-270. 10.1007/s11183-005-0038-1.

Liboff AR, Rozek RJ, Sherman ML, McLeod BR, Smith SD: Calcium-45 ion cyclotron resonance in human lymphocytes. J Bioelectr. 1987, 6: 13-22.

Rassadina V, Domanskii V, Averina NG, Schoch S, Rüdiger W: Correlation between chlorophyllide esterification, Shibata shift and regeneration of protochlorophyllide650 in flash-irradiated etiolated barley leaves. Physiol Plant. 2004, 121: 556-567. 10.1111/j.1399-3054.2004.00362.x.

Strasburger E, Noll F, Schenck H, Schimper AFW: Lehrbuch der Botanik. 1978, Stuttgart, New York: Gustav Fischer Verlag, 331-

Porra RJ: Chlorophylls. Edited by: Scheer H. 1991, CRC Press Boca Raton, Florida, 31-57.

Köst HP: Handbook of Chromatography. Edited by: Zweig G, Sherma J. 1988, CRC Press Boca Raton, Florida, 93-114.

Panfili G, Fratianni A, Irano M: Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J Agric Food Chem. 2004, 52: 6373-6377. 10.1021/jf0402025.

Binhi VN: Amplitude and Frequency Dissociation Spectra of Ion-Protein Complexes Rotating in Magnetic Fields. Bioelectromagnetics. 2000, 21: 34-45. 10.1002/(SICI)1521-186X(200001)21:1<34::AID-BEM6>3.0.CO;2-8.

Zhadin MN, Novikov VV, Barnes FS, Pergola NF: Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics. 1998, 19: 41-5. 10.1002/(SICI)1521-186X(1998)19:1<41::AID-BEM4>3.0.CO;2-4.

Del Giudice E, Fleischmann M, Preparata G, Talpo G: On the "unreasonable" effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics. 2002, 23: 522-30. 10.1002/bem.10046.

Novikov VV, Karnaukhov AV: Mechanism of action of weak electromagnetic field on ionic currents in aqueous solutions of amino acids. Bioelectromagnetics. 1997, 18: 25-7. 10.1002/(SICI)1521-186X(1997)18:1<25::AID-BEM5>3.0.CO;2-7.

Scaiano JC, Cozens FL, Mohtat N: Influence of combined AC-DC magnetic fields on free radicals in organized and biological systems. Development of a model and application of the radical pair mechanism to radicals in micelles. Photochem Photobiol. 1995, 62: 818-29.

Dodd AN, Love J, Webb AAR: The plant clock shows its metal: Circadian regulation of cytosolic free Ca2+. Trends Plant Sci. 2005, 10: 15-21. 10.1016/j.tplants.2004.12.001.

Klyachenko VI: Effect of calcium and magnesium on the structure of organoids of a plant cell. Nauchnye Trudy USKhA. 1970, 31: 72-7.

Gong H, Zhu X, Chen K, Wang S, Zhang C: Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005, 169: 313-321. 10.1016/j.plantsci.2005.02.023.

Le Lay P, Boddi B, Kovacevic D, Juneau P, Dewez D, Popovic R: Spectroscopic analysis of desiccation-induced alterations of the chlorophyllide transformation pathway in etiolated barley leaves. Plant Physiol. 2001, 127: 202-211. 10.1104/pp.127.1.202.