Geometry of the discrete Hamilton–Jacobi equation: applications in optimal control
Tài liệu tham khảo
Abraham, 1978
Arnold, 1978, Mathematical methods of Classical Mechanics, 60
Bourdin, 2013, Helmholtz inverse problem of the discrete calculus of variations, J. Diff. Equ. Appl., 19, 1417, 10.1080/10236198.2012.754435
Cresson, 2014, Discrete versus continuous structures I- discrete embedding and differential equations, arXiV preprint, 1411
Cresson, 2015, Continuous versus discrete structures II- discrete Hamiltonian systems and Helmholtz condition, arXiV preprint, 1411
Dirac, 2001
Elnatanov, 1996, The Hamilton—Jacobi difference equation, Functional Differential Equations, 3, 279
Gotay, 1978, Presymplectic manifolds and the Dirac-Bergman theory of constraints, J. Math. Phys., 19, 2388, 10.1063/1.523597
Goldstein, 1979
Goldstein, 2001
Kibble, 2004
Marsden, 2001, Discrete Mechanics and variational integrators, 10
Sakamoto, 2008, Analytical approximation methods for the stabilizing solution of the Hamilton—Jacobi equation, IEEE Transactions on Automatic Control, 53, 2335, 10.1109/TAC.2008.2006113
Bloch, 2000, Asymptotic Hamiltonian Dynamics: the Toda Lattice, the three wave interaction and nonholonomic Chaplygin sleigh, Physica D Nonlinear phenomena, 141, 297, 10.1016/S0167-2789(00)00046-4
Cariñena, 2006, Geometric Hamilton—Jacobi theory, Int. J. Geom. Methods in Mod. Phys., 3, 1417, 10.1142/S0219887806001764
Cariñena, 2010, Geometric Hamilton—Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7, 431, 10.1142/S0219887810004385
Cariñena, 2016, Structural aspects of the Hamilton—Jacobi theory, Int. J. Geom. Methods Mod. Phys., 13, 10.1142/S0219887816500171
Crampin, 1981, On the differential geometry of the Euler—Lagrange equations and the inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen., 14, 2567, 10.1088/0305-4470/14/10/012
Guo, 2002, Difference discrete variational principles Euler—Lagrange cohomology and symplectic, multisymplectic structures in: difference discrete variational principle, Commun. Theor. Phys., 37, 1, 10.1088/0253-6102/37/1/1
Hairer, 2002
S. Jalnapurkar, S. Pekarsky and M. West: Discrete variational mechanics on cotangent bundles, Working notes 2000.
Jordan, 1964, Theory of a class of discrete optimal control systems, J. Electronics Control, 17, 694, 10.1080/00207216408937740
Kane, 1999, Symplectic energy momentum preserving variational integrators, J. Math. Phys., 40, 3353, 10.1063/1.532892
Klein, 1963, Operateurs differéntielles sur les variétés puesque tangentes, C.R. Acad. Sci. Paris, 257, 2392
Leok, 2012, Hamilton—Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints, J. Math. Phys., 53, 072905, 10.1063/1.4736733
de León, 2009, A geometric Hamilton—Jacobi theory for classical field theories, 129
de León, 1989, Methods of Differential Geometry in Analytical Mechanics, 158
de León, 2017, A geometric Hamilton—Jacobi theory on Nambu—Poisson manifolds, J. Math. Phys., 58, 033508, 10.1063/1.4978853
de León, 2017, Cosymplectic and contact structures to resolve time-dependent and dissipative Hamiltonian systems, J. Phys. A: Math. Theor., 50, 255205, 10.1088/1751-8121/aa711d
Markman, 2000, An iterative algorithm for solving Hamilton—Jacobi type equations, SIAM J. Sci. Comp., 22, 312, 10.1137/S1064827598344315
Mickens, 1991
Richtmeyer, 1967
Rund, 1966
Sakamoto, 2002, Analysis of the Hamilton—Jacobi equation in nonlinear control theory by symplectic geometry, SIAM J. Control Optimization, 40, 1924, 10.1137/S0363012999362803
Sanz-Serna, 1999