Geometry of the discrete Hamilton–Jacobi equation: applications in optimal control

Reports on Mathematical Physics - Tập 81 - Trang 39-63 - 2018
Manuel de León1
1Consejo Superior de Investigaciones Científicas, C/ NicolÁs Cabrera, 13-15, 28049 Madrid, Spain

Tài liệu tham khảo

Abraham, 1978

Arnold, 1978, Mathematical methods of Classical Mechanics, 60

Arnold, 1988, Dynamical Systems III, 10.1007/978-3-662-02535-2

Bourdin, 2013, Helmholtz inverse problem of the discrete calculus of variations, J. Diff. Equ. Appl., 19, 1417, 10.1080/10236198.2012.754435

Cresson, 2014, Discrete versus continuous structures I- discrete embedding and differential equations, arXiV preprint, 1411

Cresson, 2015, Continuous versus discrete structures II- discrete Hamiltonian systems and Helmholtz condition, arXiV preprint, 1411

Dirac, 2001

Elnatanov, 1996, The Hamilton—Jacobi difference equation, Functional Differential Equations, 3, 279

Gotay, 1978, Presymplectic manifolds and the Dirac-Bergman theory of constraints, J. Math. Phys., 19, 2388, 10.1063/1.523597

Goldstein, 1979

Goldstein, 2001

Kibble, 2004

Marsden, 2001, Discrete Mechanics and variational integrators, 10

Ohsawa, 2011, Discrete Hamilton—Jacobi theory, SIAM J. Control Optim., 49, 1829, 10.1137/090776822

Sakamoto, 2008, Analytical approximation methods for the stabilizing solution of the Hamilton—Jacobi equation, IEEE Transactions on Automatic Control, 53, 2335, 10.1109/TAC.2008.2006113

Bloch, 2000, Asymptotic Hamiltonian Dynamics: the Toda Lattice, the three wave interaction and nonholonomic Chaplygin sleigh, Physica D Nonlinear phenomena, 141, 297, 10.1016/S0167-2789(00)00046-4

Cariñena, 2006, Geometric Hamilton—Jacobi theory, Int. J. Geom. Methods in Mod. Phys., 3, 1417, 10.1142/S0219887806001764

Cariñena, 2010, Geometric Hamilton—Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7, 431, 10.1142/S0219887810004385

Cariñena, 2016, Structural aspects of the Hamilton—Jacobi theory, Int. J. Geom. Methods Mod. Phys., 13, 10.1142/S0219887816500171

Crampin, 1981, On the differential geometry of the Euler—Lagrange equations and the inverse problem of Lagrangian dynamics, J. Phys. A: Math. Gen., 14, 2567, 10.1088/0305-4470/14/10/012

Guo, 2002, Difference discrete variational principles Euler—Lagrange cohomology and symplectic, multisymplectic structures in: difference discrete variational principle, Commun. Theor. Phys., 37, 1, 10.1088/0253-6102/37/1/1

Hairer, 2002

S. Jalnapurkar, S. Pekarsky and M. West: Discrete variational mechanics on cotangent bundles, Working notes 2000.

Jordan, 1964, Theory of a class of discrete optimal control systems, J. Electronics Control, 17, 694, 10.1080/00207216408937740

Kane, 1999, Symplectic energy momentum preserving variational integrators, J. Math. Phys., 40, 3353, 10.1063/1.532892

Klein, 1963, Operateurs differéntielles sur les variétés puesque tangentes, C.R. Acad. Sci. Paris, 257, 2392

Leok, 2012, Hamilton—Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints, J. Math. Phys., 53, 072905, 10.1063/1.4736733

de León, 2009, A geometric Hamilton—Jacobi theory for classical field theories, 129

de León, 1989, Methods of Differential Geometry in Analytical Mechanics, 158

de León, 2017, A geometric Hamilton—Jacobi theory on Nambu—Poisson manifolds, J. Math. Phys., 58, 033508, 10.1063/1.4978853

de León, 2017, Cosymplectic and contact structures to resolve time-dependent and dissipative Hamiltonian systems, J. Phys. A: Math. Theor., 50, 255205, 10.1088/1751-8121/aa711d

Markman, 2000, An iterative algorithm for solving Hamilton—Jacobi type equations, SIAM J. Sci. Comp., 22, 312, 10.1137/S1064827598344315

Mickens, 1991

Richtmeyer, 1967

Rund, 1966

Sakamoto, 2002, Analysis of the Hamilton—Jacobi equation in nonlinear control theory by symplectic geometry, SIAM J. Control Optimization, 40, 1924, 10.1137/S0363012999362803

Sanz-Serna, 1999