Variational and Geometric Structures of Discrete Dirac Mechanics
Tóm tắt
In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange–Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange–d’Alembert–Pontryagin and Hamilton–d’Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.
Tài liệu tham khảo
R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Addison–Wesley, Reading 1978).
P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds (Princeton University Press, Princeton, 2008).
V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1989).
L. Bates, J. Sniatycki, Nonholonomic reduction, Rep. Math. Phys. 32(1), 99–115 (1993).
G. Benettin, A.M. Cherubini, F. Fassò, A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds, SIAM J. Sci. Comput. 23(4), 1189–1203 (2001). ISSN 1064-8275.
A.M. Bloch, Nonholonomic Mechanics and Control (Springer, Berlin, 2003).
A.M. Bloch, P.E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits, in Differential Geometry and Control Theory (American Mathematical Society, Providence, 1997), pp. 103–117.
N. Bou-Rabee, J.E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: introduction and structure-preserving properties, Found. Comput. Math. (2008).
J.F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M.C. Munõz Lecanda, N. Román-Roy, Geometric Hamilton–Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys. 7(3), 431–454 (2010).
J. Cervera, A.J. van der Schaft, A. Baños, On composition of Dirac structures and its implications for control by interconnection, in Nonlinear and Adaptive Control. Lecture Notes in Control and Inform. Sci., vol. 281 (Springer, Berlin, 2003), pp. 55–63.
J. Cortés, S. Martínez, Non-holonomic integrators, Nonlinearity 14(5), 1365–1392 (2001).
T. Courant, Dirac manifolds, Trans. Am. Math. Soc. 319(2), 631–661 (1990).
T. Courant, Tangent Dirac structures, J. Phys. A, Math. Gen. 23(22), 5153–5168 (1990).
M. Dalsmo, A.J. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim. 37(1), 54–91 (1998).
M. de León, J.C. Marrero, D. Martín de Diego, Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech. 2(2), 159–198 (2010).
P.A.M. Dirac, Generalized Hamiltonian dynamics, Can. J. Math. 2, 129–148 (1950).
P.A.M. Dirac, Generalized Hamiltonian dynamics, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 246(1246), 326–332 (1958).
P.A.M. Dirac, Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, 1964).
H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics, 3rd edn. (Addison–Wesley, Reading, 2001).
M.J. Gotay, J.M. Nester, Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraints, in Group Theoretical Methods in Physics, vol. 94 (Springer, Berlin, 1979), pp. 272–279.
M.J. Gotay, J.M. Nester, Presymplectic Lagrangian systems. I: the constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré A 30(2), 129–142 (1979).
M.J. Gotay, J.M. Nester, Presymplectic Lagrangian systems. II: the second-order equation problem, Ann. Inst. Henri Poincaré A 32(1), 1–13 (1980).
E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations (Springer, Berlin, 2006).
D. Iglesias, J.C. Marrero, D.M. de Diego, E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci. 18(3), 221–276 (2008).
D. Iglesias-Ponte, M. de León, D.M. de Diego, Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems. Journal of Physics A: Mathematical and Theoretical 41(1) (2008).
L. Kharevych, W. Yang, Y. Tong, E. Kanso, J.E. Marsden, P. Schröder, M. Desbrun, Geometric, variational integrators for computer animation, in ACM/EG Symposium on Computer Animation (2006), pp. 43–51.
W.S. Koon, J.E. Marsden, The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems, Rep. Math. Phys. 40(1), 21–62 (1997).
H.P. Künzle, Degenerate Lagrangean systems, Ann. Inst. Henri Poincaré A 11(4), 393–414 (1969).
S. Lall, M. West, Discrete variational Hamiltonian mechanics, J. Phys. A, Math. Gen. 39(19), 5509–5519 (2006).
B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics, vol. 14 (Cambridge University Press, Cambridge, 2004).
M. Leok, T. Ohsawa, Discrete Dirac structures and implicit discrete Lagrangian and Hamiltonian systems, in XVIII International Fall Workshop on Geometry and Physics, vol. 1260 (AIP, New York, 2010), pp. 91–102.
M. Leok, T. Ohsawa, D. Sosa, Hamilton–Jacobi theory for degenerate Lagrangian systems with constraints (in preparation).
A. Lew, J.E. Marsden, M. Ortiz, M. West, An overview of variational integrators, in Finite Element Methods: 1970’s and Beyond (CIMNE 2003).
J.C. Marrero, D. Martín de Diego, E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity 19(6), 1313–1348 (2006).
J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry (Springer, Berlin, 1999).
J.E. Marsden, M. West, Discrete mechanics and variational integrators, in Acta Numerica (2001), pp. 357–514.
J.E. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler–Poincaré and Lie–Poisson equations, Nonlinearity 12(6), 1647–1662 (1999).
R. McLachlan, M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci. 16(4), 283–328 (2006).
T. Ohsawa, A.M. Bloch, Nonholonomic Hamilton–Jacobi equation and integrability, J. Geom. Mech. 1(4), 461–481 (2009).
T. Ohsawa, O.E. Fernandez, A.M. Bloch, D.V. Zenkov, Nonholonomic Hamilton–Jacobi theory via Chaplygin Hamiltonization, J. Geom. Phys. 61(8), 1263–1291 (2011).
A. Stern, Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoids, J. Symplectic Geom. 8(2), 225–238 (2010).
W.M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris 283, 15–18 (1976).
W.M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris 283, 675–678 (1976).
A.J. van der Schaft, Implicit Hamiltonian systems with symmetry, Rep. Math. Phys. 41(2), 203–221 (1998).
A.J. van der Schaft, Port-Hamiltonian systems: an introductory survey, in Proceedings of the International Congress of Mathematicians, vol. 3 (2006), pp. 1339–1365.
A.J. van der Schaft, B.M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys. 34(2), 225–233 (1994).
J. Vankerschaver, H. Yoshimura, J.E. Marsden, Multi-Dirac structures and Hamilton–Pontryagin principles for Lagrange–Dirac field theories. Preprint, arXiv:1008.0252 (2010).
V.S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Springer, New York, 1984).
A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Commun. 7, 207–231 (1996).
H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics Part I: implicit Lagrangian systems, J. Geom. Phys. 57(1), 133–156 (2006).
H. Yoshimura, J.E. Marsden, Dirac structures in Lagrangian mechanics Part II: variational structures, J. Geom. Phys. 57(1), 209–250 (2006).
H. Yoshimura, J.E. Marsden, Reduction of Dirac structures and the Hamilton–Pontryagin principle, Rep. Math. Phys. 60(3), 381–426 (2007).
H. Yoshimura, J.E. Marsden, Dirac structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systems, in Lagrangian and Hamiltonian Methods for Nonlinear Control 2006 (2007), pp. 233–247.
H. Yoshimura, J.E. Marsden, Dirac cotangent bundle reduction, J. Geom. Mech. 1(1), 87–158 (2009).