Trình Duyệt Tăng Tốc GPU cho Genomics Hình Ảnh Thần Kinh
Tóm tắt
Từ khóa
#hình ảnh thần kinh #genomics #khai thác dữ liệu lớn #thuật toán ANOVA #thuật toán VEGAS #GPU #phân tích SNPTài liệu tham khảo
Eklund, A., Friman, O., Andersson, M., Knutsson, H. (2011). A gpu accelerated interactive interface for exploratory functional connectivity analysis of fmri data. In 2011 18Th IEEE international conference on image processing, pp. 1589–1592. https://doi.org/10.1109/ICIP.2011.6115753.
Glahn, D., Thompson, P., Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28(6), 488–501. https://doi.org/10.1002/hbm.20401.
Kim, S., Shen, L., Saykin, A., West, J. (2009). Data synthesis and tool development for exploring imaging genomic patterns. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology proceedings . IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2009, 298–305. https://doi.org/10.1109/CIBCB.2009.4925742.
Kim, S., Shen, L., Saykin, A., West, J. (2009). Visual exploration of genetic association with voxel-based imaging phenotypes in an mci/ad study. Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2009, 3849–52. https://doi.org/10.1109/IEMBS.2009.5332570.
Kim, S., Swaminathan, S., Inlow, M., Risacher, S., Nho, K., Shen, L., Foroud, T., Petersen, R., Aisen, P., Soares, H., Toledo, J., Shaw, L., Trojanowski, J., Weiner, M., McDonald, B., Farlow, M., Ghetti, B., Saykin, A. (2013). Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel. PloS one, 8(7), e70,269. https://doi.org/10.1371/journal.pone.0070269.
Mishra, A., & Macgregor, S. (2015). Vegas2: Software for more flexible gene-based testing. Twin Research and Human Genetics : the Official Journal of the International Society for Twin Studies, 18(1), 86–91. https://doi.org/10.1017/thg.2014.79.
Risacher, S., Saykin, A., West, J., Shen, L., Firpi, H., McDonald, B. (2009). Baseline mri predictors of conversion from mci to probable ad in the adni cohort. Current Alzheimer Research, 6(4), 347–61.
Saykin, A.J., Shen, L., Foroud, T.M., Potkin, S.G., Swaminathan, S., Kim, S., Risacher, S.L., Nho, K., Huentelman, M.J., Craig, D.W., Thompson, P.M., Stein, J.L., Moore, J.H., Farrer, L.A., Green, R.C., Bertram, L., Jack C.R.J., Weiner, M.W. (2010). Alzheimer’s disease neuroimaging, I.: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement, 6(3), 265–73. https://doi.org/10.1016/j.jalz.2010.03.013. https://www.ncbi.nlm.nih.gov/pubmed/20451875.
Saykin, A.J., Shen, L., Yao, X., Kim, S., Nho, K., Risacher, S.L., Ramanan, V.K., Foroud, T.M., Faber, K.M., Sarwar, N., Munsie, L.M., Hu, X., Soares, H.D., Potkin, S.G., Thompson, P.M., Kauwe, J.S., Kaddurah-Daouk, R., Green, R.C., Toga, A.W., Weiner, M.W. (2015). Alzheimer’s disease neuroimaging, I.: Genetic studies of quantitative mci and ad phenotypes in adni: Progress, opportunities, and plans. Alzheimers Dement, 11(7), 792–814. https://doi.org/10.1016/j.jalz.2015.05.009. https://www.ncbi.nlm.nih.gov/pubmed/26194313.
Seshadri, S., DeStefano, A., Au, R., Massaro, J., Beiser, A., Kelly-Hayes, M., Kase, C., D’Agostino, R., Decarli, C., Atwood, L., Wolf, P. (2007). Genetic correlates of brain aging on mri and cognitive test measures: a genome-wide association and linkage analysis in the framingham study. BMC Medical Genetics, 8 Suppl 1, S15. https://doi.org/10.1186/1471-2350-8-S1-S15.
Shen, L., Kim, S., Risacher, S., Nho, K., Swaminathan, S., West, J., Foroud, T., Pankratz, N., Moore, J., Sloan, C., Huentelman, M., Craig, D., Dechairo, B., Potkin, S., Jack, C., Weiner, M., Saykin, A. (2010). Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in mci and ad: a study of the adni cohort. NeuroImage, 53(3), 1051–63. https://doi.org/10.1016/j.neuroimage.2010.01.042.
Shen, L., Thompson, P., Potkin, S., Bertram, L., Farrer, L., Foroud, T., Green, R., Hu, X., Huentelman, M., Kim, S., Kauwe, J., Li, Q., Liu, E., Macciardi, F., Moore, J., Munsie, L., Nho, K., Ramanan, V., Risacher, S., Stone, D., Swaminathan, S., Toga, A., Weiner, M., Saykin, A. (2014). Genetic analysis of quantitative phenotypes in ad and mci: imaging, cognition and biomarkers. Brain Imaging and Behavior, 8(2), 183–207. https://doi.org/10.1007/s11682-013-9262-z.
Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Cedarbaum, J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Luthman, J., Morris, J.C., Petersen, R.C., Saykin, A.J., Shaw, L., Shen, L., Schwarz, A., Toga, A.W., Trojanowski, J.Q. (2015). Alzheimer’s Disease Neuroimaging, I.: 2014 update of the alzheimer’s disease neuroimaging initiative: A review of papers published since its inception. Alzheimers Dement, 11(6), e1–120. https://doi.org/10.1016/j.jalz.2014.11.001. https://www.ncbi.nlm.nih.gov/pubmed/26073027.
Yao, X., Yan, J., Liu, K., Kim, S., Nho, K., Risacher, S.L., Greene, C.S., Moore, J.H., Saykin, A.J., Shen, L. (2017). Alzheimer’s Disease Neuroimaging, I.: Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx344. https://www.ncbi.nlm.nih.gov/pubmed/28575147.