From probabilistic mechanics to quantum theory
Tóm tắt
Tài liệu tham khảo
Bopp, R.: La mecanique quantique est-elle une mecanique statistique classique particuliere? Ann. Inst. H. Poincare 15, 81 (1956)
Bopp, F.: The principles of the statistical equations of motion on quantum theory. In: Körner, S. (ed.) Observation and Interpretation, p. 189. Butterworths Scientific Publications, London (1957)
Klein, U.: The statistical origins of quantum mechanics. Phys. Res. Int. 2010, 808424 (2010). https://doi.org/10.1155/2010/808424
Sudarshan, E.C.G., Mukunda, N.: Classsical Dynamics: A Modern Perspective. Wiley, New York (1974)
Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1947)
Klein, U.: What is the limit \(\hbar \rightarrow 0\) of quantum theory? Am. J. Phys. 80, 1009 (2012)
Ballentine, L.E.: Quantum Mechanics. Prentice Hall, Englewood Cliffs, NJ (1989). See chapter 15
Hall, B.C.: Quantum Theory for Mathematicians. Springer, New York (2013)
Cohen-Tanoudji, C., Diu, B., Laoë, F.: Quantum Mechanics. Wiley, Hoboken (1998)
Mauro, D.: On Koopman–von Neumann waves. Int. J. Mod. Phys. A 17, 1301 (2002)
Gozzi, E., Mauro, D.: On Koopman–von Neumann waves II. Int. J. Mod. Phys. A 19, 1475 (2004)
Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn, p. 88. Oxford University Press, Oxford (1958)
Einstein, A.: In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher-Scientist, p. 665. Harper and Row, New York (1949)
Popper, K.R.: The Open Universe—An Argument for Indeterminism. Rowman and Littlefield, Totowa (1982)
Perlman, H.S.: Quantum mechanics is incomplete but is consistent with locality. Found. Phys. 47, 1309 (2017). https://doi.org/10.1007/s10701-017-0111-6
Hess, K.: Einstein was right. CRC Press, 6000 Broken Sound Parkway NW (2015)