Báo cáo đầu tiên về vi khuẩn có thể nuôi cấy trên da của Melanophryniscus admirabilis (Cóc bụng đỏ quý giá)

Microbial Ecology - Tập 86 - Trang 756-761 - 2022
Julia Ienes-Lima1, Janira Prichula2, Michelle Abadie3, Márcio Borges-Martins3, Ana Paula Guedes Frazzon1
1Post-Graduation Program in Agricultural and Environmental Microbiology, Department of Microbiology, Immunology, and Parasitology, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
2Gram-Positive Cocci Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
3Post-Graduation Program in Animal Biology, Department of Zoology, Biosciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil

Tóm tắt

Melanophryniscus admirabilis là một loài cóc nhỏ, đang trong tình trạng nguy cấp và có phân bố vi địa chỉ tại rừng Atlantic ở miền nam Brazil. Mikrobiome da của động vật lưỡng cư được coi là một trong những hàng rào phòng thủ đầu tiên chống lại các nhiễm trùng do vi sinh vật gây bệnh, chẳng hạn như Batrachochytrium dendrobatidis (Bd). Kiến thức về mikrobiome da của động vật lưỡng cư rất quan trọng đối với nhiều lĩnh vực, bao gồm bảo tồn loài, phát hiện và định lượng những thay đổi và tác nhân gây stress trong môi trường. Trong nghiên cứu hiện tại, chúng tôi đã điều tra, lần đầu tiên, vi khuẩn có thể nuôi cấy trên da của M. admirabilis hoang dã và phát hiện nấm Bd bằng kỹ thuật phản ứng chuỗi polymerase nested (PCR). Các mẫu lấy từ swab da được thu thập từ 15 cá thể M. admirabilis hoang dã và việc phân lập vi khuẩn được thực hiện bằng nhiều chiến lược nuôi cấy khác nhau. Tổng cộng có 62 mẫu vi khuẩn được phân lập, trong đó các chi, bao gồm Bacillus (n = 22; 34.48%), Citrobacter (n = 10; 16.13%), và Serratia (n = 12; 19.35%), là những chi vi khuẩn được phân lập thường xuyên nhất. Điều thú vị là tất cả các mẫu da được thử nghiệm đều âm tính với Bd. Một số chi vi khuẩn được xác định trong nghiên cứu của chúng tôi có thể đang hoạt động theo mối quan hệ cộng sinh và bảo vệ chúng khỏi nấm Bd. Thêm vào đó, những vi khuẩn này có thể đóng vai trò thiết yếu trong việc duy trì loài này trong môi trường bị tác động bởi các hoạt động của con người. Báo cáo đầu tiên này về vi khuẩn có thể nuôi cấy trên da từ quần thể tự nhiên của M. admirabilis đã nâng cao kiến thức của chúng ta về mikrobiome da của động vật lưỡng cư, đóng góp vào việc hiểu rõ hơn về sinh thái của chúng và cách mà loài này đã sinh tồn trong một môi trường bị điều chỉnh bởi hành động của con người.

Từ khóa

#Melanophryniscus admirabilis #vi khuẩn có thể nuôi cấy #mikrobiome #bảo tồn loài #nấm Bd

Tài liệu tham khảo

ICMBio (2018) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume V— Anfíbios. Instituto Chico Mendes de Conservação da Biodiversidade (Org) Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, Brasília. https://www.gov.br/icmbio/pt-br/centrais-de-conteudo/publicacoes/publicacoes-diversas/livro_vermelho_2018_vol5.pdf. Accessed 7 Mar 2022

IUCN (2021) The IUCN red list of threatened species. Version 2021–3. International Union for Conservation of Nature. https://www.iucnredlist.org/. Accessed 7 Mar 2022

IUCN (2013) Melanophryniscus admirabilis. The IUCN red list of threatened species. The International Union for Conservation of Nature Amphibians on the IUCN red list of threatened species. https://www.iucnredlist.org/species/135993/44846478. Accessed 7 Mar 2022

ICMBio (2012) Sumário Executivo do Plano de Ação Nacional para Conservação de Anfíbios e Répteis Ameaçados da Região Sul do Brasil. Instituto Chico Mendes de Conservação da Biodiversidade (Org). https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/pan/pan-herpetofauna-do-sul/2-ciclo/pan-herpetofauna-do-sul-sumario.pdf. Accessed 7 Mar 2022

Fonte LFM, Abadie M, Bordignon DW, Mendes T, Zank C, Krob A, Kindel A, Borges-Martins (2021) Admirable Redbelly Toad: the amphibian that defied a hydropower plant. In: Elias S (ed) Reference Module in Earth Systems and Environmental Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-821139-7.00100-8

Mann MB, Prichula J, De Castro IMS, Severo JM, Abadie M, De Freitas Lima TM, Caorsi V, Borges-Martins M, Frazzon J, Frazzon APG (2021) The oral bacterial community in Melanophryniscus admirabilis (Admirable Red-Belly Toads): implications for conservation. Microorganisms 9(2):220. https://doi.org/10.3390/microorganisms9020220

Bahrndorff S, Alemu T, Alemneh T, Lund Nielsen J (2016) The microbiome of animals: implications for conservation biology. Int J Genomics 2016:5304028. https://doi.org/10.1155/2016/5304028

Pask JD, Woodhams DC, Louise A, Rollins-Smith LA (2012) The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis. Glob Chang Biol 18:1231–1238. https://doi.org/10.1111/j.1365-2486.2011.02622.x

Colombo BM, Scalvenzi T, Benlamara S, Pollet N (2015) Microbiota and mucosal immunity in amphibians. Front Immunol 6:111. https://doi.org/10.3389/fimmu.2015.00111

Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. PNAS 111:E5049–E5058. https://doi.org/10.1073/pnas.1412752111

Rebollar EA, Martínez-Ugalde E, Orta AH (2020) The amphibian skin microbiome and its protective role against chytridiomycosis. Herpetologica 76(2):167–177. https://doi.org/10.1655/0018-0831-76.2.167

Bates KA, Clare FC, O’Hanlon S, Bosch J, Brookes L, Hopkins K, McLaughlin EJ, Daniel O, Garner TWJ, Fisher MC, Harrison XA (2018) Amphibian chytridiomycosis outbreak dynamics are linked with host skin bacterial community structure. Nat Commun 9:1–11. https://doi.org/10.1038/s41467-018-02967-w

Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95:9031–9036. https://doi.org/10.1073/pnas.95.15.9031

Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802–e56802. https://doi.org/10.1371/journal.pone.0056802

Proença DN, Fasola E, Lopes I, Morais PV (2021) Characterization of the skin cultivable microbiota composition of the frog Pelophylax perezi inhabiting different environments. Int J Environ Res Public Health 18(5):2585. https://doi.org/10.3390/ijerph18052585

Rebollar EA, Hughey MC, Medina D, Harris RN, Ibáñez R, Belden LK (2016) Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis. ISME J 10:1682–1695. https://doi.org/10.1038/ismej.2015.234

Bletz MC, Myers J, Woodhams DC, Rabemananjara FC, Rakotonirina A, Weldon C, Edmonds D, Vences M, Harris RN (2017) Estimating herd immunity to amphibian chytridiomycosis in Madagascar based on the defensive function of amphibian skin bacteria. Front Microbiol 8:1751. https://doi.org/10.3389/fmicb.2017.01751

Sumi CD, Yang BW, Yeo IC, Hahm YT (2015) Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can J Microbiol 61(2):93–103. https://doi.org/10.1139/cjm-2014-0613

Bartel LC, Abrahamovich E, Mori C, López AC, Alippi AM (2020) Bacillus and Brevibacillus strains as potential antagonists of Paenibacillus larvae and Ascosphaera apis. J Apic Res 58(1):117–132. https://doi.org/10.1080/00218839.2018.1495439

Rebollar EA, Jani AJ, Guilherme Becker C, Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ (2019) Diversity-stability dynamics of the amphibian skin microbiome and susceptibility to a lethal viral pathogen. Front Microbiol 10:2883. https://doi.org/10.3389/fmicb.2019.02883

Coutinho SDA, Burke JC, de Paula CD, Rodrigues MT, Catão-Dias JL (2015) The use of singleplex and nested PCR to detect Batrachochytrium dendrobatidis in free-living frogs Braz. J Microbiol 46:551–555. https://doi.org/10.1590/S1517-838246246220140110

Hammer O, Harper DAT, Ryan PD (2001) Past: Paleontological Statistics Software package for education and data analysis. University of Oslo, Norway

Woodhams DC, Alford RA, Antwis RE, Archer H, Becker MH, Belden LK, Bell SC, Bletz M, Daskin JH, Davis LR, Flechas SV, Lauer A, Gonzalez A, Harris RN, Holden WM, Hughey MC, Ibáñez R, Knight R, Kueneman J, Rabemananjara F, Reinert LK, Rollins-Smith LA, Roman-Rodriguez F, Shaw SD, Walke JB, McKenzie V (2015) Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens. Ecology 96:595–595. https://doi.org/10.1890/14-1837.1

Flechas SV, Acosta-González A, Escobar LA, Kueneman JG, Sánchez-Quitian ZA, Parra-Giraldo CM, Rollins-Smith LA, Reinert LK, Vredenburg VT, Amézquita A, Woodhams DC (2019) Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME J 13:361–373. https://doi.org/10.1038/s41396-018-0284-9

Dökenel G, Özer S (2019) Bacterial agents isolated from cultured marsh frog (Pelophylax ridibundus, Pallas 1771). EgeJFAS 36:115–124. https://doi.org/10.12714/egejfas.2019.36.2.03

Padilla D, Acosta F, Ramos-Vivas J, Grasso V, Bravo J, El Aamri F, Real F (2015) The pathogen Hafnia alvei in veterinary medicine: a review. J Appl Anim Res 43:231–235. https://doi.org/10.1080/09712119.2014.963086

Giannattasio-Ferraz S, Maskeri L, Oliveira AP, Barbosa-Stancioli EF, Putonti C (2020) Draft genome sequence of Enterobacter asburiae UFMG-H9, isolated from urine from a healthy bovine heifer (Gyr Breed). Microbiol Resour Announc 9:e00385-20. https://doi.org/10.1128/mra.00385-20

Zhou C, Ge N, Guo J, Zhu L, Ma Z, Cheng S, Wang J (2019) Enterobacter asburiae reduces cadmium toxicity in maize plants by repressing iron uptake-associated pathways. J Agric Food Chem 67:10126–10136. https://doi.org/10.1021/acs.jafc.9b03293

Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217. https://doi.org/10.1038/ismej.2014.77

Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5:441. https://doi.org/10.3389/fmicb.2014.00441

Varga JFA, Bui-Marinos MP, Katzenback BA (2019) Frog skin innate immune defenses: sensing and surviving pathogens. Front Immunol 9:3128. https://doi.org/10.3389/fimmu.2018.03128

Jani AJ, Briggs CJ (2018) Host and aquatic environment shape the amphibian skin microbiome but effects on downstream resistance to the pathogen Batrachochytrium dendrobatidis are variable. Front Microbiol 9:487–487. https://doi.org/10.3389/fmicb.2018.00487

Daszak P, Strieby A, Cunningham AA, Longcore JE, Brown CC, Porter D (2004) Experimental evidence that the bullfrog (Rana caterbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol J 14:201–207