FTY720 (fingolimod) modulates the severity of viral-induced encephalomyelitis and demyelination

Springer Science and Business Media LLC - Tập 11 - Trang 1-12 - 2014
Caroline A Blanc1, Hugh Rosen2, Thomas E Lane3
1Department of Molecular Biology and Biochemistry, University of California, Irvine, USA
2Department of Chemical Physiology, The Scripps Research Institute, California, USA
3Department of Pathology, Division of Microbiology & Immunology, University of Utah School of Medicine, Utah, USA

Tóm tắt

FTY720 (fingolimod) is the first oral drug approved by the Food and Drug Administration for treatment of patients with the relapsing-remitting form of the human demyelinating disease multiple sclerosis. Evidence suggests that the therapeutic benefit of FTY720 occurs by preventing the egress of lymphocytes from lymph nodes thereby inhibiting the infiltration of disease-causing lymphocytes into the central nervous system (CNS). We hypothesized that FTY720 treatment would affect lymphocyte migration to the CNS and influence disease severity in a mouse model of viral-induced neurologic disease. Mice were infected intracranially with the neurotropic JHM strain of mouse hepatitis virus. Infected animals were treated with increasing doses (1, 3 and 10 mg/kg) of FTY720 and morbidity and mortality recorded. Infiltration of inflammatory virus-specific T cells (tetramer staining) into the CNS of FTY720-treated mice was determined using flow cytometry. The effects of FTY720 treatment on virus-specific T cell proliferation, cytokine production and cytolytic activity were also determined. The severity of neuroinflammation and demyelination in FTY720-treated mice was examined by flow cytometry and histopathologically, respectively, in the spinal cords of the mice. Administration of FTY720 to JHMV-infected mice resulted in increased clinical disease severity and mortality. These results correlated with impaired ability to control viral replication (P < 0.05) within the CNS at days 7 and 14 post-infection, which was associated with diminished accumulation of virus-specific CD4+ and CD8+ T cells (P < 0.05) into the CNS. Reduced neuroinflammation in FTY720-treated mice correlated with increased retention of T lymphocytes within draining cervical lymph nodes (P < 0.05). Treatment with FTY720 did not affect virus-specific T cell proliferation, expression of IFN-γ, TNF-α or cytolytic activity. FTY720-treated mice exhibited a reduction in the severity of demyelination associated with dampened neuroinflammation. These findings indicate that FTY720 mutes effective anti-viral immune responses through impacting migration and accumulation of virus-specific T cells within the CNS during acute viral-induced encephalomyelitis. FTY720 treatment reduces the severity of neuroinflammatory-mediated demyelination by restricting the access of disease-causing lymphocytes into the CNS but is not associated with viral recrudescence in this model.

Tài liệu tham khảo

Compston A, Coles A: Multiple sclerosis. Lancet. 2002, 359: 1221-1231. 10.1016/S0140-6736(02)08220-X.

Cohen JA, Chun J: Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann Neurol. 2011, 69: 759-777. 10.1002/ana.22426.

O’Connor P, Comi G, Montalban X, Antel J, Radue EW, de Vera A, Pohlmann H, Kappos L, Group FDS: Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study. Neurology. 2009, 72: 73-79. 10.1212/01.wnl.0000338569.32367.3d.

Aktas O, Kury P, Kieseier B, Hartung HP: Fingolimod is a potential novel therapy for multiple sclerosis. Nat Rev Neurol. 2010, 6: 373-382. 10.1038/nrneurol.2010.76.

Deogracias R, Yazdani M, Dekkers MP, Guy J, Ionescu MC, Vogt KE, Barde YA: Fingolimod, a sphingosine-1 phosphate receptor modulator, increases BDNF levels and improves symptoms of a mouse model of Rett syndrome. Proc Natl Acad Sci USA. 2012, 109: 14230-14235. 10.1073/pnas.1206093109.

Willis MA, Cohen JA: Fingolimod therapy for multiple sclerosis. Semin Neurol. 2013, 33: 37-44. 10.1055/s-0033-1343794.

Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P: Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010, 9: 883-897. 10.1038/nrd3248.

Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G, Chun J: FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA. 2011, 108: 751-756. 10.1073/pnas.1014154108.

Fujino M, Funeshima N, Kitazawa Y, Kimura H, Amemiya H, Suzuki S, Li XK: Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther. 2003, 305: 70-77. 10.1124/jpet.102.045658.

Webb M, Tham CS, Lin FF, Lariosa-Willingham K, Yu N, Hale J, Mandala S, Chun J, Rao TS: Sphingosine 1-phosphate receptor agonists attenuate relapsing-remitting experimental autoimmune encephalitis in SJL mice. J Neuroimmunol. 2004, 153: 108-121. 10.1016/j.jneuroim.2004.04.015.

Wu GF, Dandekar AA, Pewe L, Perlman S: CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J Immunol. 2000, 165: 2278-2286. 10.4049/jimmunol.165.4.2278.

Herndon RM, Griffin DE, McCormick U, Weiner LP: Mouse hepatitis virus-induced recurrent demyelination. A preliminary report. Arch Neurol. 1975, 32: 32-35. 10.1001/archneur.1975.00490430054008.

Weiner LP: Pathogenesis of demyelination induced by a mouse hepatitis. Arch Neurol. 1973, 28: 298-303. 10.1001/archneur.1973.00490230034003.

Lane TE, Buchmeier MJ: Murine coronavirus infection: a paradigm for virus-induced demyelinating disease. Trends Microbiol. 1997, 5: 9-14. 10.1016/S0966-842X(97)81768-4.

Pender MP, Csurhes PA, Smith C, Beagley L, Hooper KD, Raj M, Coulthard A, Burrows SR, Khanna R: Epstein–Barr virus-specific adoptive immunotherapy for progressive multiple sclerosis.Mult Scler 2014, doi:10.1177/1352458514521888..

Strautins K, Tschochner M, James I, Choo L, Dunn D, Pedrini M, Kermode A, Carroll W, Nolan D: Combining HLA-DR risk alleles and anti-Epstein–Barr virus antibody profiles to stratify multiple sclerosis risk. Mult Scler. 2014, 20: 286-294. 10.1177/1352458513498829.

Virtanen JO, Wohler J, Fenton K, Reich DS, Jacobson S: Oligoclonal bands in multiple sclerosis reactive against two herpesviruses and association with magnetic resonance imaging findings. Mult Scler. 2014, 20: 27-34. 10.1177/1352458513490545.

Libbey JE, Cusick MF, Fujinami RS: Role of pathogens in multiple sclerosis. Int Rev Immunol. 2013, 33 (4): 266-283. 10.3109/08830185.2013.823422.

Cusick MF, Libbey JE, Fujinami RS: Multiple sclerosis: autoimmunity and viruses. Curr Opin Rheumatol. 2013, 25: 496-501. 10.1097/BOR.0b013e328362004d.

Friedman JE, Lyons MJ, Cu G, Ablashl DV, Whitman JE, Edgar M, Koskiniemi M, Vaheri A, Zabriskie JB: The association of the human herpesvirus-6 and MS. Mult Scler. 1999, 5: 355-362. 10.1177/135245859900500509.

Lincoln JA, Hankiewicz K, Cook SD: Could Epstein–Barr virus or canine distemper virus cause multiple sclerosis?. Neurol Clin. 2008, 26: 699-715. 10.1016/j.ncl.2008.03.004. viii

Lipton HL, Liang Z, Hertzler S, Son KN: A specific viral cause of multiple sclerosis: one virus, one disease. Ann Neurol. 2007, 61: 514-523. 10.1002/ana.21116.

McCoy L, Tsunoda I, Fujinami RS: Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity. 2006, 39: 9-19. 10.1080/08916930500484799.

Pugliatti M, Harbo HF, Holmoy T, Kampman MT, Myhr KM, Riise T, Wolfson C: Environmental risk factors in multiple sclerosis. Acta Neurol Scand Suppl. 2008, 188: 34-40. 10.1111/j.1600-0404.2008.01029.x.

Tompkins SM, Fuller KG, Miller SD: Theiler’s virus-mediated autoimmunity: local presentation of CNS antigens and epitope spreading. Ann NY Acad Sci. 2002, 958: 26-38. 10.1111/j.1749-6632.2002.tb02944.x.

Cahalan SM, Gonzalez-Cabrera PJ, Sarkisyan G, Nguyen N, Schaeffer MT, Huang L, Yeager A, Clemons B, Scott F, Rosen H: Actions of a picomolar short-acting S1P(1) agonist in S1P(1)-eGFP knock-in mice. Nat Chem Biol. 2011, 7: 254-256. 10.1038/nchembio.547.

Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE: Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci USA. 2010, 107: 11068-11073. 10.1073/pnas.1006375107.

Stiles LN, Hardison JL, Schaumburg CS, Whitman LM, Lane TE: T cell antiviral effector function is not dependent on CXCL10 following murine coronavirus infection. J Immunol. 2006, 177: 8372-8380. 10.4049/jimmunol.177.12.8372.

Stiles LN, Hosking MP, Edwards RA, Strieter RM, Lane TE: Differential roles for CXCR3 in CD4+ and CD8+ T cell trafficking following viral infection of the CNS. Eur J Immunol. 2006, 36: 613-622. 10.1002/eji.200535509.

Stiles LN, Liu MT, Kane JAC, Lane TE: CXCL10 and trafficking of virus-specific T cells during coronavirus demyelination. Autoimmunity. 2009, 42 (6): 484-491. 10.1080/08916930902810708.

Bergmann CC, Yao Q, Lin M, Stohlman SA: The JHM strain of mouse hepatitis virus induces a spike protein-specific Db-restricted cytotoxic T cell response. J Gen Virol. 1996, 77 (Pt 2): 315-325. 10.1099/0022-1317-77-2-315.

Glass WG, Hickey MJ, Hardison JL, Liu MT, Manning JE, Lane TE: Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J Immunol. 2004, 172: 4018-4025. 10.4049/jimmunol.172.7.4018.

Glass WG, Lane TE: Functional analysis of the CC chemokine receptor 5 (CCR5) on virus-specific CD8+ T cells following coronavirus infection of the central nervous system. Virology. 2003, 312: 407-414. 10.1016/S0042-6822(03)00237-X.

Totoiu MO, Nistor GI, Lane TE, Keirstead HS: Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol. 2004, 187: 254-265. 10.1016/j.expneurol.2004.01.028.

Bergmann CC, Lane TE, Stohlman SA: Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol. 2006, 4: 121-132. 10.1038/nrmicro1343.

Gonzalez JM, Bergmann CC, Ramakrishna C, Hinton DR, Atkinson R, Hoskin J, Macklin WB, Stohlman SA: Inhibition of interferon-γ signaling in oligodendroglia delays coronavirus clearance without altering demyelination. Am J Pathol. 2006, 168: 796-804. 10.2353/ajpath.2006.050496.

Marten NW, Stohlman SA, Bergmann CC: MHV infection of the CNS: mechanisms of immune-mediated control. Viral Immunol. 2001, 14: 1-18. 10.1089/08828240151061329.

Ramakrishna C, Bergmann CC, Atkinson R, Stohlman SA: Control of central nervous system viral persistence by neutralizing antibody. J Virol. 2003, 77: 4670-4678. 10.1128/JVI.77.8.4670-4678.2003.

Ramakrishna C, Stohlman SA, Atkinson RD, Shlomchik MJ, Bergmann CC: Mechanisms of central nervous system viral persistence: the critical role of antibody and B cells. J Immunol. 2002, 168: 1204-1211. 10.4049/jimmunol.168.3.1204.

Strader CR, Pearce CJ, Oberlies NH: Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J Nat Prod. 2011, 74: 900-907. 10.1021/np2000528.

Radue EW, O’Connor P, Polman CH, Hohlfeld R, Calabresi P, Selmaj K, Mueller-Lenke N, Agoropoulou C, Holdbrook F, de Vera A, Zhang-Auberson L, Francis G, Burtin P, Kappos L: Impact of fingolimod therapy on magnetic resonance imaging outcomes in patients with multiple sclerosis. Arch Neurol. 2012, 69: 1259-1269. 10.1001/archneurol.2012.1051.

Cahalan SM, Gonzalez-Cabrera PJ, Nguyen N, Guerrero M, Cisar EA, Leaf NB, Brown SJ, Roberts E, Rosen H: Sphingosine 1-phosphate receptor 1 (S1P(1)) upregulation and amelioration of experimental autoimmune encephalomyelitis by an S1P(1) antagonist. Mol Pharmacol. 2013, 83: 316-321. 10.1124/mol.112.082958.

Gonzalez-Cabrera PJ, Cahalan SM, Nguyen N, Sarkisyan G, Leaf NB, Cameron MD, Kago T, Rosen H: S1P(1) receptor modulation with cyclical recovery from lymphopenia ameliorates mouse model of multiple sclerosis. Mol Pharmacol. 2012, 81: 166-174. 10.1124/mol.111.076109.

Gross CM, Baumgartner A, Rauer S, Stich O: Multiple sclerosis rebound following herpes zoster infection and suspension of fingolimod. Neurology. 2012, 79: 2006-2007. 10.1212/WNL.0b013e3182735d24.

Ratchford JN, Costello K, Reich DS, Calabresi PA: Varicella-zoster virus encephalitis and vasculopathy in a patient treated with fingolimod. Neurology. 2012, 79: 2002-2004. 10.1212/WNL.0b013e3182735d00.

Walsh KB, Marsolais D, Welch MJ, Rosen H, Oldstone MB: Treatment with a sphingosine analog does not alter the outcome of a persistent virus infection. Virology. 2010, 397: 260-269. 10.1016/j.virol.2009.08.043.

Walsh KB, Teijaro JR, Wilker PR, Jatzek A, Fremgen DM, Das SC, Watanabe T, Hatta M, Shinya K, Suresh M, Kawaoka Y, Rosen H, Oldstone MB: Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA. 2011, 108: 12018-12023. 10.1073/pnas.1107024108.

Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F, Wlachos A, Sobanov J, Kinnunen A, Baumruker T: FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis: expression of central nervous system genes and reversal of blood–brain-barrier damage. Brain Pathol. 2009, 19: 254-266. 10.1111/j.1750-3639.2008.00182.x.

Cyster JG, Schwab SR: Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012, 30: 69-94. 10.1146/annurev-immunol-020711-075011.

Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG: Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004, 427: 355-360. 10.1038/nature02284.

Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, Padmanabhan K, Swoboda JG, Ahmad I, Kondo T, Gage FH, Theofilopoulos AN, Lawson BR, Schultz PG, Lairson LL: A regenerative approach to the treatment of multiple sclerosis. Nature. 2013, 502: 327-332. 10.1038/nature12647.

Miron VE, Ludwin SK, Darlington PJ, Jarjour AA, Soliven B, Kennedy TE, Antel JP: Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol. 2010, 176: 2682-2694. 10.2353/ajpath.2010.091234.