Explainable artificial intelligence for cybersecurity: a literature survey
Tóm tắt
Tài liệu tham khảo
2018 reform of EU data protection rules. European Commission. May 25, 2018 (visited on 07/25/2022). https://ec.europa.eu/info/sites/default/files/data-protection-factsheet-changes_en.pdf
Adadi A, Berrada M (2018) Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). In: IEEE Access, vol 6, pp 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
Ahmed M et al (eds) (2022) Explainable artificial intelligence for Cyber security. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-030-96630-0
Berg T et al (2014) Birdsnap: Large-scale finegrained visual categorization of birds. In: 2014 IEEE conference on computer vision and pattern recognition, pp 2019–2026. https://doi.org/10.1109/CVPR.2014.259
Breiman L (2001) Random forests. In: Machine learning, vol 45.1, pp 5–32
Dellermann D et al (2019) Hybrid intelligence. In: Business & information systems engineering, vol 61.5, pp 637–643
Deng J et al (2009) ImageNet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848
Deng J et al (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee, pp 248–255
Dimanov B et al (2020) You Shouldn’t Trust Me: Learning models which conceal unfairness from multiple explanation methods. In: SafeAI@AAAI
Došilović FK, Brčcić M, Hlupić N (2018) Explainable artificial intelligence: A survey. In: 2018 41st International convention on information and communication technology, electronics and microelectronics (MIPRO), pp 0210–0215. https://doi.org/10.23919/MIPRO.2018.8400040
Faraway JJ (2016) Extending the linear model with R. Chapman and Hall/CRC. https://doi.org/10.1201/9781315382722
Guo W et al (2018) Lemna: Explaining deep learning based security applications. In: proceedings of the 2018 ACM SIGSAC conference on computer and communications security, pp 364–379
Hagras H (2018) Toward Human-Understandable Explainable AI. In: Computer, vol 51.9, pp 28–36. https://doi.org/10.1109/MC.2018.3620965
Hanif A, Zhang X, Wood S (2021) A survey on explainable artificial intelligence techniques and challenges. In: 2021 IEEE 25th international enterprise distributed object computing workshop (EDOCW), pp 81–89. https://doi.org/10.1109/EDOCW52865.2021.00036
Hastie T et al (2009) The elements of statistical learning: data mining, inference, and prediction, vol 2. Springer, Berlin
Kirchner L, Larson J, Mattu S, Angwin J (2020) Propublica Recidivism Dataset. https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis. Accessed 01 Aug 2022
Kleinbaum DG et al (2002) Logistic regression. Springer, New York
Koroniotis N et al (2019) Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. In: Future generation computer systems. issn: 0167-739X, vol 100, pp 779–796. https://doi.org/10.1016/j.future.2019.05.041
Ciontos A, Fenoy LM (2020) Performance evaluation of explainable ai methods against adversarial noise
Marino DL, Wickramasinghe CS, Manic M (2018) An adversarial approach for explainable ai in intrusion detection systems. In: IECON 2018-44th annual conference of the IEEE industrial electronics society. IEEE, pp 3237–3243
Molnar C (2018) A guide for making black box models explainable. In: https://christophm.github.io/interpretable-ml-book. Accessed 01 Aug 2022
Moustafa N (2019) New generations of internet of things datasets for cybersecurity applications based machine learning: TON IoT datasets. In: Proceedings of the eResearch Australasia Conference. Brisbane, Australia, pp 21–25
Paredes J et al (2021) On the importance of domainspecific explanations in AI-based cybersecurity systems (Technical Report). In: arXiv:2108.02006
Pierazzi F et al (2020) Intriguing properties of adversarial ML Attacks in the problem space. English. In: 2020 IEEE symposium on security and privacy. issn: 2375–1207, pp 1332–1349. https://doi.org/10.1109/SP40000.2020.00073
Slack DZ et al (2021) Reliable Post hoc Explanations: Modeling Uncertainty in Explainability. In: Beygelzimer A et al (eds) Advances in neural information processing systems. https://openreview.net/forum?id=rqfq0CYIekd. Accessed 01 Aug 2022
Wali S, Khan I (2021) Explainable AI and random forest based reliable intrusion detection system. In: https://doi.org/10.36227/techrxiv.17169080.v1
Zeng X, Martinez T (2001) Distribution-balanced stratified cross-validation for accuracy estimation. In: Journal of experimental & theoretical artificial intelligence vol 12. https://doi.org/10.1080/095281300146272