A novel feature selection method considering feature interaction
Tài liệu tham khảo
Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157
Dash, 1997, Feature selection for classification, Intell. Data Anal., 1, 131, 10.1016/S1088-467X(97)00008-5
Santana, 2014, Filter-based optimization techniques for selection of feature subsets in ensemble systems, Expert Syst. Appl., 41, 1622, 10.1016/j.eswa.2013.08.059
Abe, 2006, Non-parametric classifier-independent feature selection, Pattern Recognit., 39, 737, 10.1016/j.patcog.2005.11.007
Wei, 2007, Feature subset selection and ranking for data dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell., 29, 162, 10.1109/TPAMI.2007.250607
Maldonado, 2009, A wrapper method for feature selection using support vector machines, Inf. Sci., 179, 2208, 10.1016/j.ins.2009.02.014
Guyon, 2002, Gene selection for cancer classification using support vector machines, Mach. Learn., 46, 389, 10.1023/A:1012487302797
Zhu, 2007, Markov blanket-embedded genetic algorithm for gene selection, Pattern Recognit., 40, 3236, 10.1016/j.patcog.2007.02.007
Maji, 2011, Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data, Int. J. Approx. Reasoning, 52, 408, 10.1016/j.ijar.2010.09.006
Jakulin, 2003, Analyzing attribute dependencies, 229
Shannon, 2001, A mathematical theory of communication, ACM SIGMOBILE Mobile Comput. Commun. Rev., 5, 3, 10.1145/584091.584093
Cover, 1991
A. Jakulin, I. Bratko, Testing the significance of attribute interactions, in: Proceedings of the Twenty-first International Conference on Machine Learning, ACM, 2004, pp. 409–416.
Jakulin, 2003
K. Kira, L.A. Rendell, The feature selection problem: traditional methods and a new algorithm, in: Proceedings of Ninth National Conference on Artificial Intelligence, 1992, pp. 129–134.
Robnik-Šikonja, 2003, Theoretical and empirical analysis of ReliefF and RReliefF, Mach. Learn., 53, 23, 10.1023/A:1025667309714
Kononenko, 1994, 171
Hall, 1999
Dash, 2003, Consistency-based search in feature selection, Artif. Intell., 151, 155, 10.1016/S0004-3702(03)00079-1
Liu, 2009, Feature selection with dynamic mutual information, Pattern Recognit., 42, 1330, 10.1016/j.patcog.2008.10.028
H. Yang, J. Moody, Feature selection based on joint mutual information, in: Proceedings of International ICSC Symposium on Advances in Intelligent Data Analysis, 1999, pp. 22–25.
Battiti, 1994, Using mutual information for selecting features in supervised neural net learning, IEEE Trans. Neural Netw., 5, 537, 10.1109/72.298224
Peng, 2005, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell., 27, 1226, 10.1109/TPAMI.2005.159
Fleuret, 2004, Fast binary feature selection with conditional mutual information, J. Mach. Learn. Res., 5, 1531
Cai, 2009, An efficient gene selection algorithm based on mutual information, Neurocomputing, 72, 991, 10.1016/j.neucom.2008.04.005
G. Wang, F.H. Lochovsky, Feature selection with conditional mutual information maximum in text categorization, in: Proceedings of the Thirteenth International Conference on Information and Knowledge Management, ACM, 2004, pp. 342–349.
Levi, 2010, Learning to classify by ongoing feature selection, Image Vis. Comput., 28, 715, 10.1016/j.imavis.2008.10.010
Yu, 2004, Efficient feature selection via analysis of relevance and redundancy, J. Mach. Learn. Res., 5, 1205
Song, 2013, A fast clustering-based feature subset selection algorithm for high-dimensional data, IEEE Trans. Knowl. Data Eng., 25, 1, 10.1109/TKDE.2011.181
Zhao, 2009, Searching for interacting features in subset selection, Intell. Data Anal., 13, 207, 10.3233/IDA-2009-0364
Wang, 2013, Selecting feature subset for high dimension data via the propositional FOIL rules, Pattern Recognit., 46, 199, 10.1016/j.patcog.2012.07.028
Gennari, 1989, Models of incremental concept formation, Artif. Intell., 40, 11, 10.1016/0004-3702(89)90046-5
G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, In: Proceedings of the Eleventh International Conference on Machine Learning, 1994, pp. 121–129.
D. Koller, M. Sahami. Toward optimal feature selection, in: Proceedings of the Thirteenth International Conference on Machine Learning, 1996, pp. 284–292.
Jakulin, 2005
McGill, 1954, Multivariate information transmission, Psychometrika, 19, 97, 10.1007/BF02289159
Witten, 2005
J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
Aha, 1991, Instance-based learning algorithms, Mach. Learn., 6, 37, 10.1007/BF00153759
E. Frank, I.H. Witten, Generating accurate rule sets without global optimization, in: Proceedings of the Fifteenth International Conference on Machine Learning, 1998, pp. 144–151.
A. Asuncion, D. Newman, UCI Machine Learning Repository, 2007, http://www.ics.uci.edu~mlearn/MLRepository
U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of Thirteenth International Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.
Grzymala-Busse, 2001, A comparison of several approaches to missing attribute values in data mining, 378