Phân tích thực nghiệm phát hiện phần mềm độc hại trên Android dựa trên sự kết hợp của quyền truy cập và gọi API
Tóm tắt
Từ khóa
Tài liệu tham khảo
http://www.businessinsider.in/This-Chart-Shows-The-Massive-Pricing-Problem-Facing-Apples-iPhone-6/articleshow/39197536.cms. Accessed Oct 2016
http://www.darkreading.com/mobile/android-app-permission-in-google-play-contains-security-flaw/d/d-id/1328834. Accessed Jan 2017
https://www.eset.com/int/about/newsroom/research/fake-android-apps-bypass-google-play-store-security-installed-200000-times-in-a-month/. Accessed Jan 2017
Chuang, H.-Y., Wang, S.-D.: Machine learning based hybrid behavior models for Android malware analysis. In: IEEE International Conference on Software Quality, Reliability and Security, pp. 201–206 (2015). https://doi.org/10.1109/QRS.2015.37
Qin, Z., Xu, Y., Di, Y., Zhang, Q., Huang, J.: Android malware detection based on permission and behavior analysis. In: International Conference on Cyberspace Technology (CCT 2014), pp. 1–4 (2014). https://doi.org/10.1049/cp.2014.1352
Ariyapala, K., Do, H.G., Anh, H.N., Ng, W.K., Conti, M.: A host and network based intrusion detection for Android smartphones. In: 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 849–854 (2016). https://doi.org/10.1109/WAINA.2016.35
Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in Android. J. Parallel Distrib. Comput. 103, 22–31 (2017). https://doi.org/10.1016/j.jpdc.2016.10.012
Milosevic, N., Dehghantanha, A., Choo, K.-K.R.: Machine learning aided Android malware classification. Comput. Electr. Eng. 61, 266–274 (2017). https://doi.org/10.1016/j.compeleceng.2017.02.013
Kim, H.-H., Choi, M.-J.: Linux kernel-based feature selection for Android malware detection. In: The 16th Asia-Pacific Network Operations and Management Symposium, pp. 1–4 (2014). https://doi.org/10.1109/APNOMS.2014.6996540
Xiaoyan, Z., Juan, F., Xiujuan, W.: Android malware detection based on permissions. In: International Conference on Information and Communications Technologies (ICT 2014), pp. 1–5 (2014). https://doi.org/10.1049/cp.2014.0605
Zhu, J., Wu, Z., Guan, Z., Chen, Z.: API sequences based malware detection for Android. In: IEEE 12th International Conference on Ubiquitous Intelligence and Computing and IEEE 12th International Conference on Automatic and Trusted Computing and IEEE 15th International Conference on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 673–676 (2015). https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.135
Peiravian, N., Zhu, X.: Machine learning for Android malware detection using permission and API calls. In: IEEE 25th International Conference on Tools with Artificial Intelligence (2013). https://doi.org/10.1109/ICTAI.2013.53
Chan, P.P.K., Song, W.-K.: Static detection of Android malware by using permissions and API calls. In: International Conference on Machine Learning and Cybernetics, vol. 1, 82–87 (2014). https://doi.org/10.1109/ICMLC.2014.7009096
Qiao, M., Sung, A.H., Liu, Q.: Merging permission and API features for Android malware detection. In: 5th International Congress on Advanced Applied Informatics (IIAI-AAI 2016), pp. 566–571 (2016). https://doi.org/10.1109/IIAI-AAI.2016.237
Su, M.-Y., Fung, K.-T., Huang, Y.-H., Kang, M.-Z., Chung, Y.-H.: Detection of Android malware: combined with static analysis and dynamic analysis. In: 2016 International Conference on High Performance Computing & Simulation (HPCS), pp. 1013–1018 (2016). https://doi.org/10.1109/HPCSim.2016.7568448
http://stackoverflow.com/questions/18717286/what-are-thecontents-of-an-android-apk-file. Accessed Feb 2017
Ling, X.F.: Feature selection. http://courses.washington.edu/ling572/winter2013/slides/class7feature selection.pdf. Accessed Sept 2016
Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an extended insight into the obfuscation effects on Android malware. Comput. Secur. 51, 16–31 (2015). https://doi.org/10.1016/j.cose.2015.02.007