AndroDialysis: Analysis of Android Intent Effectiveness in Malware Detection

Computers & Security - Tập 65 - Trang 121-134 - 2017
Ali Feizollah1, Nor Badrul Anuar1, Rosli Salleh1, Guillermo Suarez-Tangil2, Steven Furnell3
1Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Computer Security (COSEC) Lab, Department of Computer Science, Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain
3Centre for Security, Communications and Network Research, School of Computing, Electronics and Mathematics, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK

Tài liệu tham khảo

Aafer, 2013 Aftab, 2014 Aresu, 2015 Arp, 2014 Au, 2012 Aung, 2013, Permission-based android malware detection, Int J Sci Technol Res, 2, 228 Backes, 2013 Barrera, 2010 Barros, 2015 Bielza, 2014, Discrete Bayesian network classifiers: a survey, ACM Comput Surv (CSUR), 47, 5, 10.1145/2576868 Chakradeo, 2013 Chickering, 1995 Chin, 2011 Cohen, 2003 Damopoulos, 2012, Evaluation of anomaly-based IDS for mobile devices using machine learning classifiers, Secur Commun Netw, 5, 3, 10.1002/sec.341 Desnos, 2012 Feizollah, 2013, A study of machine learning classifiers for anomaly-based mobile botnet detection, Malaysian J Comput Sci, 26, 251 Feizollah, 2015, A review on feature selection in mobile malware detection, Digit Invest, 13, 22, 10.1016/j.diin.2015.02.001 Feng, 2014 Fratantonio, 2016 Friedman, 1997, Bayesian network classifiers, Mach Learn, 29, 131, 10.1023/A:1007465528199 Gartner Google Grace, 2012 Hellman, 2013 Huang, 2013 Jain Jiang Jiang, 2013 Jo, 2011, Exploring the optimal path to online game loyalty: Bayesian networks versus theory-based approaches, 428 Jung, 2012 Larrañaga, 1996, Structure learning of Bayesian networks by genetic algorithms: a performance analysis of control parameters, IEEE Trans Pattern Anal Mach Intell, 18, 912, 10.1109/34.537345 Li, 2015 Luoshi, 2013 Moonsamy, 2013, Mining permission patterns for contrasting clean and malicious android applications, Future Gen Comput Syst, 36, 122, 10.1016/j.future.2013.09.014 Narudin, 2016, Evaluation of machine learning classifiers for mobile malware detection, Soft Comput, 20, 343, 10.1007/s00500-014-1511-6 Oberheide, 2012 Octeau, 2015 Pandita, 2013 Peng, 2012 Polkovnichenko Richardson Ruiz Salehi, 2009 Samra, 2013 Sanz, 2013 Shabtai, 2014, Mobile malware detection through analysis of deviations in application network behavior, Comput Secur, 43, 1, 10.1016/j.cose.2014.02.009 Suarez-Tangil, 2014, Dendroid: a text mining approach to analyzing and classifying code structures in Android malware families, Exp Syst Appl, 41, 1104, 10.1016/j.eswa.2013.07.106 Suarez-Tangil, 2015, Power-aware anomaly detection in smartphones: an analysis of on-platform versus externalized operation, Perv Mobile Comput, 18, 137, 10.1016/j.pmcj.2014.10.007 Tam, 2015 Wei, 2012 Winsniewski Wu, 2012 Yan, 2010, Bayesian network modeling for evolutionary genetic structures, Comput Math Appl, 59, 2541, 10.1016/j.camwa.2009.12.039 Yang, 2014 Yerima, 2014, Analysis of Bayesian classification-based approaches for Android malware detection, IET Inf Secur, 8, 25, 10.1049/iet-ifs.2013.0095 Yoon, 2012 Zhang, 2013 Zhou, 2012