Error estimates for the Ginzburg-Landau approximation

Zeitschrift für angewandte Mathematik und Physik - Tập 45 - Trang 433-457 - 1994
Guido Schneider1
1Institut für Angewandte Mathematik, Universität Hannover, Hannover, Germany

Tóm tắt

Modulation equations play an essential role in the understanding of complicated dynamical systems near the threshold of instability. Here we look at systems defined over domains with one unbounded direction and show that the Ginzburg-Landau equation dominates the dynamics of the full problem, locally, at least over a long time-scale. As an application of our approximation theorem we look here at Bénard's problem. The method we use involves a careful handling of critical modes in the Fourier-transformed problem and an estimate of Gronwall's type.

Tài liệu tham khảo

S.-N. Chow and J. K. Hale,Methods of Bifurcation Theory. Springer, Berlin 1982.

A. Mielke,Reduction of PDE's on domains with several unbounded directions. J. Appl. Math. Phys. (ZAMP)43 449–470 (1992).

G. Schneider,Die Gültigkeit der Ginzburg-Landau-Approximation. Dissertation, Universität Stuttgart 1992.

A. Vanderbauwhede and G. Iooss,Center-manifold in infinite dimensions. Dynamics Reported1, 125–162. Springer-Verlag, Berlin 1992.

A. van Harten,Decay to the Ginzburg-Landau manifold. Lecture held in Stuttgart, July 1992.