Enhancing the retention of phosphorus through bacterial oxidation of iron or sulfide in the eutrophic sediments of Lake Taihu

Science of The Total Environment - Tập 791 - Trang 148039 - 2021
Xianfang Fan1, Xigang Xing2, Shiming Ding1
1State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
2General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, Beijing, China

Tài liệu tham khảo

Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Met., 7, 335, 10.1038/nmeth.f.303

Chakraborty, 2013, Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp strain UWNR4 and Acidovorax sp strain 2AN, Appl. Environ. Microbiol., 79, 748, 10.1128/AEM.02709-12

Chen, 2016, Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake, Environ. Pollut., 213, 904, 10.1016/j.envpol.2016.03.061

Devries, 2003, In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters, Environ. Sci. Technol., 37, 792, 10.1021/es026109j

Ding, 2016, In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments, Sci. Rep., 6, 24341, 10.1038/srep24341

Dixon, 2003, VEGAN, a package of R functions for community ecology, J. Veg. Sci., 14, 927, 10.1111/j.1654-1103.2003.tb02228.x

Einsele, 1938, Uber chemische und kolloidchemische Vorgange in Eisen-Phosphat-Lystemen unter limnochemischen und limnogeologischen Gesichtspunkten, Arch. Hydrobiol., 33, 361

Gao, 2020, The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity, ISME J., 15, 29, 10.1038/s41396-020-00751-7

Goldhammer, 2010, Microbial sequestration of phosphorus in anoxic upwelling sediments, Nat. Geosci., 3, 557, 10.1038/ngeo913

Huang, 2011, Microbial activity facilitates phosphorus adsorption to shallow lake sediment, J. Soils Sediments, 11, 185, 10.1007/s11368-010-0305-4

Kappler, 2005, Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1, Geobiology, 3, 235, 10.1111/j.1472-4669.2006.00056.x

Klueglein, 2013, Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp BoFeN1 - questioning the existence of enzymatic Fe(II) oxidation, Geobiology, 11, 180, 10.1111/gbi.12019

Li, 2011, Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms, Water Res., 45, 1702, 10.1016/j.watres.2010.11.011

Louca, 2016, Decoupling function and taxonomy in the global ocean microbiome, Science, 353, 1272, 10.1126/science.aaf4507

Melton, 2014, The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle, Nat. Rev. Microbiol., 12, 797, 10.1038/nrmicro3347

Mortimer C. H. The exchange of dissolved substances between mud and water in lakes. 1 and 2. 3 and 4. J. Ecol. 1941-1942; 29: 280–329; 30: 147–201.

Pfeffer, 2012, Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218, 10.1038/nature11586

Qin, 2019, Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007-2017) efforts, Sci. Bull., 64, 354, 10.1016/j.scib.2019.02.008

Roden, 1997, Phosphate mobilization in iron-rich anaerobic sediments : microbial Fe(III) oxide reduction versus iron-sulfide formation, Arch. Hydrobiol., 139, 347, 10.1127/archiv-hydrobiol/139/1997/347

Rozan, 2002, Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms, Limnol. Oceanogr., 47, 1346, 10.4319/lo.2002.47.5.1346

Schindler, 2006, Recent advances in the understanding and management of eutrophication, Limnol. Oceanogr., 51, 356, 10.4319/lo.2006.51.1_part_2.0356

Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09

Schulz-Vogt, 2019, Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea, ISME J., 13, 1198, 10.1038/s41396-018-0315-6

Shiratori, 2008, Lutispora thermophila gen. nov., sp nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes, Int. J. Syst. Evol. Microbiol., 58, 964, 10.1099/ijs.0.65490-0

Smolders, 2017, Internal loading and redox cycling of sediment iron explain reactive phosphorus concentrations in lowland rivers, Environ. Sci. Technol., 51, 2584, 10.1021/acs.est.6b04337

Wang, 2017, Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China, Atmos. Environ., 164, 458, 10.1016/j.atmosenv.2017.06.023

Weber, 2006, Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction, Nat. Rev. Microbiol., 4, 752, 10.1038/nrmicro1490