Enhancing the retention of phosphorus through bacterial oxidation of iron or sulfide in the eutrophic sediments of Lake Taihu
Tài liệu tham khảo
Caporaso, 2010, QIIME allows analysis of high-throughput community sequencing data, Nat. Met., 7, 335, 10.1038/nmeth.f.303
Chakraborty, 2013, Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp strain UWNR4 and Acidovorax sp strain 2AN, Appl. Environ. Microbiol., 79, 748, 10.1128/AEM.02709-12
Chen, 2016, Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake, Environ. Pollut., 213, 904, 10.1016/j.envpol.2016.03.061
Devries, 2003, In situ two-dimensional high-resolution profiling of sulfide in sediment interstitial waters, Environ. Sci. Technol., 37, 792, 10.1021/es026109j
Ding, 2016, In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments, Sci. Rep., 6, 24341, 10.1038/srep24341
Dixon, 2003, VEGAN, a package of R functions for community ecology, J. Veg. Sci., 14, 927, 10.1111/j.1654-1103.2003.tb02228.x
Einsele, 1938, Uber chemische und kolloidchemische Vorgange in Eisen-Phosphat-Lystemen unter limnochemischen und limnogeologischen Gesichtspunkten, Arch. Hydrobiol., 33, 361
Gao, 2020, The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity, ISME J., 15, 29, 10.1038/s41396-020-00751-7
Goldhammer, 2010, Microbial sequestration of phosphorus in anoxic upwelling sediments, Nat. Geosci., 3, 557, 10.1038/ngeo913
Huang, 2011, Microbial activity facilitates phosphorus adsorption to shallow lake sediment, J. Soils Sediments, 11, 185, 10.1007/s11368-010-0305-4
Kappler, 2005, Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1, Geobiology, 3, 235, 10.1111/j.1472-4669.2006.00056.x
Klueglein, 2013, Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp BoFeN1 - questioning the existence of enzymatic Fe(II) oxidation, Geobiology, 11, 180, 10.1111/gbi.12019
Li, 2011, Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms, Water Res., 45, 1702, 10.1016/j.watres.2010.11.011
Louca, 2016, Decoupling function and taxonomy in the global ocean microbiome, Science, 353, 1272, 10.1126/science.aaf4507
Melton, 2014, The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle, Nat. Rev. Microbiol., 12, 797, 10.1038/nrmicro3347
Mortimer C. H. The exchange of dissolved substances between mud and water in lakes. 1 and 2. 3 and 4. J. Ecol. 1941-1942; 29: 280–329; 30: 147–201.
Pfeffer, 2012, Filamentous bacteria transport electrons over centimetre distances, Nature, 491, 218, 10.1038/nature11586
Qin, 2019, Why Lake Taihu continues to be plagued with cyanobacterial blooms through 10 years (2007-2017) efforts, Sci. Bull., 64, 354, 10.1016/j.scib.2019.02.008
Roden, 1997, Phosphate mobilization in iron-rich anaerobic sediments : microbial Fe(III) oxide reduction versus iron-sulfide formation, Arch. Hydrobiol., 139, 347, 10.1127/archiv-hydrobiol/139/1997/347
Rozan, 2002, Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms, Limnol. Oceanogr., 47, 1346, 10.4319/lo.2002.47.5.1346
Schindler, 2006, Recent advances in the understanding and management of eutrophication, Limnol. Oceanogr., 51, 356, 10.4319/lo.2006.51.1_part_2.0356
Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09
Schulz-Vogt, 2019, Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea, ISME J., 13, 1198, 10.1038/s41396-018-0315-6
Shiratori, 2008, Lutispora thermophila gen. nov., sp nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes, Int. J. Syst. Evol. Microbiol., 58, 964, 10.1099/ijs.0.65490-0
Smolders, 2017, Internal loading and redox cycling of sediment iron explain reactive phosphorus concentrations in lowland rivers, Environ. Sci. Technol., 51, 2584, 10.1021/acs.est.6b04337
Wang, 2017, Relationships between the potential production of the greenhouse gases CO2, CH4 and N2O and soil concentrations of C, N and P across 26 paddy fields in southeastern China, Atmos. Environ., 164, 458, 10.1016/j.atmosenv.2017.06.023
Weber, 2006, Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction, Nat. Rev. Microbiol., 4, 752, 10.1038/nrmicro1490