Enhanced high-temperature mechanical properties of ARAA by thermo-mechanical processing
Tài liệu tham khảo
Klueh, 2001
Gladman, 1998, Microstructural Stability of Creep Resistant Alloys for High Temperature Plant Applications, 49
Tanigawa, 2017, Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion, 57, 092004, 10.1088/1741-4326/57/9/092004
Huang, 2017, Status and improvement of CLAM for nuclear application, Nucl. Fusion, 57, 086042, 10.1088/1741-4326/aa763f
Zinkle, 2017, Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion, 57, 092005, 10.1088/1741-4326/57/9/092005
Hoffmann, 2016, Improvement of reduced activation 9% Cr steels by Ausforming, Nucl. Mater. Energy, 6, 12, 10.1016/j.nme.2015.12.001
Song, 2016, A roadmap for tailoring the strength an ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment, Acta Mater., 112, 361, 10.1016/j.actamat.2016.04.031
Tan, 2012, Microstructure control for high strength 9Cr ferritic-martensitic steels, J. Nucl. Mater., 422, 45, 10.1016/j.jnucmat.2011.12.011
Hollner, 2010, High-temperature mechanical properties improvement on modified 9Cr-1Mo martensitic steel through thermomechanical treatments, J. Nucl. Mater., 405, 101, 10.1016/j.jnucmat.2010.07.034
Leslie, 1981
Schfer, 1996, Mechanical properties of low activating martensitic 8–10% CrWVTa steels of type OPTIFER, J. Nucl. Mater., 233–237, 264, 10.1016/0022-3115(95)00183-2
Karthikeyan, 2011, Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization, J. Nucl. Mater., 419, 256, 10.1016/j.jnucmat.2011.08.010
Shrestha, 2012, Creep deformation mechanism in modified 9Cr-1Mo steel, J. Nucl. Mater., 423, 110, 10.1016/j.jnucmat.2012.01.005
Humphreys, 2004