Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

Journal of Nuclear Materials - Tập 479 - Trang 515-523 - 2016
L. Tan1, Y. Katoh1, A.-A.F. Tavassoli2, J. Henry2, M. Rieth3, H. Sakasegawa4,1, H. Tanigawa4, Q. Huang5
1Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2DMN/Dir, DEN, CEA Saclay, 91191, Gif-sur-Yvette Cedex, France
3Karlsruhe Institute of Technology, Karlsruhe, 76021, Germany
4National Institutes for Quantum and Radiological Science and Technology, Rokkasho, Aomori 039-3212, Japan
5Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China

Tài liệu tham khảo

Kohyama, 1996, J. Nucl. Mater., 233–237, 138, 10.1016/S0022-3115(96)00327-3 Harrelson, 1986, J. Nucl. Mater., 141–143, 508, 10.1016/S0022-3115(86)80091-5 Klueh, 2000, J. Nucl. Mater, 280, 353, 10.1016/S0022-3115(00)00060-X Tanigawa, 2014, Radiological assessment of the limits and potential of reduced activation ferritic/martensitic steels, Fus. Eng. Des., 89, 1573, 10.1016/j.fusengdes.2014.02.052 Huang, 2004, Study of irradiation effects in China low activation martensitic steel CLAM, J. Nucl. Mater., 329–333, 268, 10.1016/j.jnucmat.2004.04.056 Klueh, 1989, Heat treatment behavior and tensile properties of Cr–W steels, Metall. Trans. A, 20, 463, 10.1007/BF02653926 Klueh, 1989, The microstructure of chromium-tungsten steels, Metall. Trans. A, 20, 373, 10.1007/BF02653916 Klueh, 1989, Impact behavior of Cr–W steels, J. Mater. Eng., 11, 169 Klueh, 2008, Reduced activation status: future development for improved creep strength, J. Nucl. Mater, 378, 159, 10.1016/j.jnucmat.2008.05.010 Tan, 2012, Microstructure control for high strength 9Cr ferritic-martensitic steels, J. Nucl. Mater, 422, 45, 10.1016/j.jnucmat.2011.12.011 Tan, 2013, Effects of alloying elements and thermomechanical treatment on 9Cr reduced activation ferritic-martensitic (RAFM) steels, J. Nucl. Mater, 442, S13, 10.1016/j.jnucmat.2012.10.015 Tamura, 1986, J. Nucl. Mater., 141–143, 1067, 10.1016/0022-3115(86)90144-3 Asakura, 1986, Elevated temperature strength and toughness of ferritic steels, J. Jpn. At. Energy Soc., 28, 222, 10.3327/jaesj.28.222 Lindau, 2005, Fusion Eng. Des., 75–79, 989, 10.1016/j.fusengdes.2005.06.186 Huang, 2013, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater, 442, S2, 10.1016/j.jnucmat.2012.12.039 Huang, 2014, Development status of CLAM steel for fusion application, J. Nucl. Mater, 455, 649, 10.1016/j.jnucmat.2014.08.055 Banerjee, 2014, Overview of Indian activities on fusion reactor materials, J. Nucl. Mater, 455, 217, 10.1016/j.jnucmat.2014.06.009 Chun, 2014, Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel, J. Nucl. Mater, 455, 212, 10.1016/j.jnucmat.2014.05.063 NRIM Creep Data Sheet No. 43, National Research Institute for Metals, Japan, 1996. Tanigawa, 2011, Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for fusion blanket system, Fus. Eng. Des., 86, 2549, 10.1016/j.fusengdes.2011.04.047 Rieth, 2009, Specific welds for test blanket modules, J. Nucl. Mater., 386–388, 471, 10.1016/j.jnucmat.2008.12.142 Tavassoli, 2014, Current status and recent research achievements in ferritic/martensitic steels, J. Nucl. Mater, 455, 269, 10.1016/j.jnucmat.2014.06.017 Tanigawa, 2011, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater, 417, 9, 10.1016/j.jnucmat.2011.05.023 Aubert, 2011, Review of candidate welding processes of RAFM steels for ITER test blanket modules and DEMO, J. Nucl. Mater, 417, 43, 10.1016/j.jnucmat.2010.12.248 Tanigawa, 2008, Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules, Fus. Eng. Des., 83, 1471, 10.1016/j.fusengdes.2008.07.024 Smolentsev, 2015, Dual-coolant lead-lithium (DCLL) blanket status and R&D needs, Fus. Eng. Des., 100, 44, 10.1016/j.fusengdes.2014.12.031 Kimura, 2006, Ferritic steel-blanket systems integration R&D – compatibility assessment, Fus. Eng. Des., 81, 909, 10.1016/j.fusengdes.2005.09.018 Shankar, 2015, Effect of W and Ta on creep-fatigue interaction behavior of reduced activation ferritic-martensitic (RAFM) steels, Fus. Eng. Des., 100, 314, 10.1016/j.fusengdes.2015.06.191 Hirose, 2013, Irradiation response in weldment and HIP joint of reduced activation ferritic/martensitic steel, F82H, J. Nucl. Mater, 442, S557, 10.1016/j.jnucmat.2013.05.063 Materna-Morris, 2013, Tensile and low cycle fatigue properties of Eurofer97-steel after 16.3 dpa neutron irradiation at 523, 623, and 723 K, J. Nucl. Mater, 442, S62, 10.1016/j.jnucmat.2013.03.038 Alamo, 2007, Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 degrees C up to 42 dpa, J. Nucl. Mater, 367, 54, 10.1016/j.jnucmat.2007.03.166 Shiba, 2011, Long-term properties of reduced activation ferritic/martensitic steels for fusion reactor blanket system, Fus. Eng. Des., 86, 2895, 10.1016/j.fusengdes.2011.06.005 Tamura, 2000, Mechanical properties of 8Cr–2WVTa steel aged for 30,000 h, J. Nucl. Mater., 283–287, 667, 10.1016/S0022-3115(00)00138-0 Stratil, 2011, Comparison of microstructural properties and Charpy impact behavior between different plates of the Eurofer97 steel and effect of isothermal ageing, J. Nucl. Mater, 416, 311, 10.1016/j.jnucmat.2011.06.018 Sakasegawa, 2015, Mechanical properties of F82H plates with different thicknesses, Fus. Eng. Des. Odette, 2004, A master curve analysis of F82H using statistical and constraint loss size adjustments of small specimen data, J. Nucl. Mater., 329–333, 1243, 10.1016/j.jnucmat.2004.04.255 Kim, 2013, Application of master curve method to the evaluation of fracture toughness of F82H steels, J. Nucl. Mater, 442, S38, 10.1016/j.jnucmat.2013.03.079 Hu, 2013, Low cycle fatigue properties of CLAM steel at room temperature, Fus. Eng. Des., 88, 3050, 10.1016/j.fusengdes.2013.08.001 Hu, 2014, Low cycle fatigue properties of CLAM steel at 823 K, Mater. Sci. Eng. A, 613, 404, 10.1016/j.msea.2014.06.069 Marmy, 2008, Low cycle fatigue of Eurofer 97, J. Nucl. Mater, 377, 52, 10.1016/j.jnucmat.2008.02.054 Stubbins, 1996, Fatigue performance and cyclic softening of F82H, a ferritic-martensitic steel, J. Nucl. Mater., 233–237, 331, 10.1016/S0022-3115(96)00226-7 Tavassoli, 2002, Materials design data for reduced activation martensitic steel type F82H, Fus. Eng. Des., 62–62, 617, 10.1016/S0920-3796(02)00255-7 Meyers, 2009, p.718 Klueh, 2005, Development of new nano-particle-strengthened martensitic steels, Scr. Mater, 53, 275, 10.1016/j.scriptamat.2005.04.019 Hollner, 2010, High-temperature mechanical properties improvement on modified 9Cr–1Mo martensitic steel through thermomechanical treatments, J. Nucl. Mater, 405, 101, 10.1016/j.jnucmat.2010.07.034 Tan, 2013, Effect of thermomechanical treatment on 9Cr ferritic-martensitic steels, J. Nucl. Mater, 441, 713, 10.1016/j.jnucmat.2013.01.323 Gaganidze, 2007, Embrittlement behavior of neutron irradiated RAFM steels, J. Nucl. Mater., 367–370, 81, 10.1016/j.jnucmat.2007.03.163 Chun, 2014, Effects of alloying elements and heat treatments on mechanical properties of Korean reduced-activation ferritic-martensitic steel, J. Nucl. Mater, 455, 212, 10.1016/j.jnucmat.2014.05.063 Tan, 2016, Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors, J. Nucl. Mater, 478, 42, 10.1016/j.jnucmat.2016.05.037 Klimenkov, 2012, TEM characterization of precipitates in Eurofer 97, Prog. Nucl. Energy, 57, 8, 10.1016/j.pnucene.2011.10.006 Sakasegawa, 2011, Precipitation behavior in F82H during heat treatments of blanket fabrication, Fus. Eng. Des., 86, 2541, 10.1016/j.fusengdes.2011.03.087 Sakasegawa, 2015, Material properties of the F82H melted in an electric arc furnace, Fus. Eng. Des., 98–99, 2068, 10.1016/j.fusengdes.2015.06.103 Corwin, 1986, Effect of specimen size and material condition on the Charpy impact properties of 9Cr-1Mo-V-Nb steel, 325 Rieth, 2003 Tavassoli, 2002, Materials design data for reduced activation martensitic steel type F82H, Fusion Eng. Des., 61–62, 617, 10.1016/S0920-3796(02)00255-7 Tamura, 2006, Creep behavior of double tempered 8%Cr-2%WVTa martensitic steel, Mater. Trans., 47, 1332, 10.2320/matertrans.47.1332 Gaganidze, 2011, 7596 Petersen, 2010 Lucon, 2006, The Europen effort towards the development of a demo structural material: irradiation behaviour of the European reference RAFM steel Eurofer, Fus. Eng. Des., 81, 917, 10.1016/j.fusengdes.2005.08.044 Hirose, 2011, Irradiation hardening in F82H irradiated at 573 K in the HFIR, J. Nucl. Mater, 417, 108, 10.1016/j.jnucmat.2010.12.044 Yamamoto, 2014, A dual ion irradiation study of helium-dpa interactions on cavity evolution in tempered martensitic steels and nanostructured ferritic alloys, J. Nucl. Mater, 449, 190, 10.1016/j.jnucmat.2014.01.040 Yamamoto, 2009, Helium effects on microstructural evolution in tempered martensitic steels: in situ helium implanter studies in HFIR, J. Nucl. Mater., 386–388, 338, 10.1016/j.jnucmat.2008.12.134 Parish, 2015, Sequestration of cavities at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys, J. Nucl. Mater