Embedded minimal surfaces in $${\mathbb {R}}^n$$

Mathematische Zeitschrift - Tập 283 - Trang 1-24 - 2015
Antonio Alarcón1, Franc Forstnerič2,3, Francisco J. López4
1Departamento de Geometría y Topología e Instituto de Matemáticas (IEMath-GR), Universidad de Granada, Granada, Spain
2Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
3Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
4Departamento de Geometría y Topología, Universidad de Granada, Granada, Spain

Tóm tắt

In this paper, we prove that every conformal minimal immersion of an open Riemann surface into $${\mathbb {R}}^n$$ for $$n\ge 5$$ can be approximated uniformly on compacts by conformal minimal embeddings (see Theorem 1.1). Furthermore, we show that every open Riemann surface carries a proper conformal minimal embedding into $${\mathbb {R}}^5$$ (see Theorem 1.2). One of our main tools is a Mergelyan approximation theorem for conformal minimal immersions to $${\mathbb {R}}^n$$ for any $$n\ge 3$$ which is also proved in the paper (see Theorem 5.3).

Tài liệu tham khảo

Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196, 733–771 (2014)

Alarcón, A., Forstnerič, F.: Every conformal minimal surface in \({\mathbb{R}}^3\) is isotopic to the real part of a holomorphic null curve. J. Reine Angew. Math. (in press). arxiv:1408.5315

Alarcón, A., López, F.J.: Properness of associated minimal surfaces. Trans. Am. Math. Soc. 366, 5139–5154 (2014)

Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203–254 (2007)

Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 56. Springer, Berlin (2011)

Forstnerič, F.: Oka manifolds: from Oka to Stein and back. With an appendix by Finnur Lárusson. Ann. Fac. Sci. Toulouse Math. (6) 22, 747–809 (2013)

Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in \({\mathbb{C}}^2\). J. Math. Pures Appl. 91, 100–114 (2009)

Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into \({\mathbb{C}}^2\). Anal. PDE 6, 499–514 (2013)

Hörmander, L.: An Introduction to Complex Analysis in Several Variables, vol. 7, 3rd edn. North-Holland Mathematical Library, North Holland (1990)

Lárusson, F.: What is\(\ldots \) an Oka manifold? Not. Am. Math. Soc. 57, 50–52 (2010)

Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover, New York (1986)

Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956)

Whitney, H.: Collected papers. Edited and with a preface by James Eells and Domingo Toledo. Contemporary Mathematicians. Birkhäuser Boston Inc, Boston (1992)