El modelo de 6-hidroxidopamina y la fisiopatología parkinsoniana: nuevos hallazgos en un viejo modelo

Neurología - Tập 32 - Trang 533-539 - 2017
D. Hernandez-Baltazar1,2, L.M. Zavala-Flores3, A. Villanueva-Olivo4
1Cátedra CONACyT, Dirección Adjunta de Desarrollo Científico CONACyT, México, D. F., México
2Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México
3Centro de Investigación Biomédica del Noreste, IMSS, Monterrey, Nuevo León, México
4Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México

Tài liệu tham khảo

Sulzer, 2013, Neuronal vulnerability, pathogenesis, and Parkinson's disease, Mov Disord, 28, 41, 10.1002/mds.25095

Langston, 1983, Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, N Engl J Med, 309, 310, 10.1056/NEJM198308043090511

Ungerstedt, 1968, 6-Hydroxy-dopamine induced degeneration of central monoamine neurons, Eur J Pharmacol, 5, 107, 10.1016/0014-2999(68)90164-7

Blesa, 2012, Classic and new animal models of Parkinson's disease, J Biomed Biotechnol, 2012, 845618, 10.1155/2012/845618

Blum, 2001, Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson's disease, Prog Neurobiol, 65, 135, 10.1016/S0301-0082(01)00003-X

Altar, 1986, 1-Methyl-4-phenylpyridine (MPP+): Regional dopamine neuron uptake, toxicity, and novel rotational behavior following dopamine receptor proliferation, Eur J Pharmacol, 131, 199, 10.1016/0014-2999(86)90573-X

Ter Horst, 1992, Neurochemical lesioning in the rat brain with iontophoretic injection of the 1-methyl-4-phenylpyridinium ion (MPP+), Neurosci Lett, 141, 203, 10.1016/0304-3940(92)90895-E

Blesa, 2014, Parkinson's disease: Animal models and dopaminergic cell vulnerability, Front Neuroanat, 8, 155, 10.3389/fnana.2014.00155

Blandini, 2012, Animal models of Parkinson's disease, FEBS J, 279, 1156, 10.1111/j.1742-4658.2012.08491.x

Jenner, 1992, New insights into the cause of Parkinson's disease, Neurology, 42, 2241, 10.1212/WNL.42.12.2241

Harrison, 2005, Oxidative stress-induced apoptosis in neurons correlates with mitochondrial DNA base excision repair pathway imbalance, Nucleic Acids Res, 33, 4660, 10.1093/nar/gki759

Singh, 2010, Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide, Redox Rep, 15, 115, 10.1179/174329210X12650506623447

Perese, 1989, A 6-hydroxydopamine-induced selective parkinsonian rat model, Brain Res, 494, 285, 10.1016/0006-8993(89)90597-0

Venero, 1997, Time course changes in the dopaminergic nigrostriatal system following transection of the medial forebrain bundle: Detection of oxidatively modified proteins in substantia nigra, J Neurochem, 68, 2458, 10.1046/j.1471-4159.1997.68062458.x

Stanic, 2003, Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat, Eur J Neurosci, 18, 1175, 10.1046/j.1460-9568.2003.02800.x

Stanic, 2003, Changes in function and ultrastructure of striatal dopaminergic terminals that regenerate following partial lesions of the SNpc, J Neurochem, 86, 329, 10.1046/j.1471-4159.2003.01843.x

Hernandez-Baltazar, 2013, Activation of GSK-3beta and caspase-3 occurs in nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine, PloS One, 8, e70951, 10.1371/journal.pone.0070951

Mercanti, 2012, A 6-hydroxydopamine in vivo model of Parkinson's disease, Methods Mol Biol, 846, 355, 10.1007/978-1-61779-536-7_30

Healy-Stoffel, 2012, A novel use of combined tyrosine hydroxylase and silver nucleolar staining to determine the effects of a unilateral intrastriatal 6-hydroxydopamine lesion in the substantia nigra: A stereological study, J Neurosci Methods, 210, 187, 10.1016/j.jneumeth.2012.07.013

Heuer, 2012, Unilateral nigrostriatal 6-hydroxydopamine lesions in mice I: Motor impairments identify extent of dopamine depletion at three different lesion sites, Behav Brain Res, 228, 30, 10.1016/j.bbr.2011.11.027

Roedter, 2001, Comparison of unilateral and bilateral intrastriatal 6-hydroxydopamine-induced axon terminal lesions: evidence for interhemispheric functional coupling of the two nigrostriatal pathways, J Comp Neurol, 432, 217, 10.1002/cne.1098

Amalric, 1995, Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat, Eur J Neurosci, 7, 972, 10.1111/j.1460-9568.1995.tb01085.x

Deumens, 2002, Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway, Exp Neurol, 175, 303, 10.1006/exnr.2002.7891

Brichta, 2014, Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: An update, Front Neuroanat, 8, 152, 10.3389/fnana.2014.00152

Lindgren, 2012, Do alpha-synuclein vector injections provide a better model of Parkinson's disease than the classic 6-hydroxydopamine model, Exp Neurol, 237, 36, 10.1016/j.expneurol.2012.05.022

Tai, 2014, Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons, Neural Regen Res, 9, 951, 10.4103/1673-5374.133146

Razgado-Hernandez, 2015, The transfection of BDNF to dopamine neurons potentiates the effect of dopamine d3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease, PloS One, 10, e0117391, 10.1371/journal.pone.0117391

Chen, 2014, Intrastriatal GDNF gene transfer by inducible lentivirus vectors protects dopaminergic neurons in a rat model of parkinsonism, Exp Neurol, 261, 87, 10.1016/j.expneurol.2014.06.022

Deng, 2013, Co-transplantation of GDNF-overexpressing neural stem cells and fetal dopaminergic neurons mitigates motor symptoms in a rat model of Parkinson's disease, PloS One, 8, e80880, 10.1371/journal.pone.0080880

Cordero-Llana, 2015, Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson's disease, Mol Ther, 23, 244, 10.1038/mt.2014.206

Iqbal, 2013, Nanoneurotoxicity to nanoneuroprotection using biological and computational approaches, J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 31, 256, 10.1080/10590501.2013.829706

Pardo, 2014, Gene therapy and cell reprogramming for the aging brain: achievements and promise, Current gene therapy, 14, 24, 10.2174/1566523214666140120121733

Nemoto, 1999, Calretinin and calbindin-D28k in dopaminergic neurons of the rat midbrain: A triple-labeling immunohistochemical study, Brain Res, 846, 129, 10.1016/S0006-8993(99)01950-2

Ferger, 2001, 6-hydroxydopamine increases hydroxyl free radical production and DNA damage in rat striatum, Neuroreport, 12, 1155, 10.1097/00001756-200105080-00021

Sanchez-Iglesias, 2007, Time-course of brain oxidative damage caused by intrastriatal administration of 6-hydroxydopamine in a rat model of Parkinson's disease, Neurochem Res, 32, 99, 10.1007/s11064-006-9232-6

Middeldorp, 2011, GFAP in health and disease, Prog Neurobiol, 93, 421, 10.1016/j.pneurobio.2011.01.005

Aguzzi, 2013, Microglia: scapegoat, saboteur, or something else, Science, 339, 156, 10.1126/science.1227901

Rodrigues, 2004, Astroglial and microglial activation in the wistar rat ventral tegmental area after a single striatal injection of 6-hydroxydopamine, Int J Neurosci, 114, 197, 10.1080/00207450490249338

Stott, 2014, Time course of dopamine neuron loss and glial response in the 6-OHDA striatal mouse model of Parkinson's disease, Eur J Neurosci, 39, 1042, 10.1111/ejn.12459

Sauer, 1994, Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat, Neuroscience, 59, 401, 10.1016/0306-4522(94)90605-X

Kostrzewa, 2000, Review of apoptosis vs necrosis of substantia nigra pars compacta in Parkinson's disease, Neurotox Res, 2, 239, 10.1007/BF03033797

Blandini, 2007, Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: New clues from an old model, Eur J Neurosci, 25, 397, 10.1111/j.1460-9568.2006.05285.x

Zuch, 2000, Time course of degenerative alterations in nigral dopaminergic neurons following a 6-hydroxydopamine lesion, J Comp Neurol, 427, 440, 10.1002/1096-9861(20001120)427:3<440::AID-CNE10>3.0.CO;2-7

Charriaut-Marlangue, 1995, A cautionary note on the use of the TUNEL stain to determine apoptosis, Neuroreport, 7, 61, 10.1097/00001756-199512000-00014

Ito, 2006, Method of specific detection of apoptosis using formamide-induced DNA denaturation assay, J Histochem Cytochem, 54, 683, 10.1369/jhc.5A6799.2006

Jellinger, 2001, Cell death mechanisms in neurodegeneration, J Cell Mol Med, 5, 1, 10.1111/j.1582-4934.2001.tb00134.x

D’Amelio, 2012, Caspase-3 in the central nervous system: Beyond apoptosis, Trends Neurosci, 35, 700, 10.1016/j.tins.2012.06.004

Han, 2003, Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment, J Neurosci, 23, 5069, 10.1523/JNEUROSCI.23-12-05069.2003

Cutillas, 1999, Caspase inhibition protects nigral neurons against 6-OHDA-induced retrograde degeneration, Neuroreport, 10, 2605, 10.1097/00001756-199908200-00030

Hanrott, 2006, 6-hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta, J Biol Chem, 281, 5373, 10.1074/jbc.M511560200

Jeon, 1999, Activation of caspase-3 in developmental models of programmed cell death in neurons of the substantia nigra, J Neurochem, 73, 322, 10.1046/j.1471-4159.1999.0730322.x

Ebert, 2008, Progressive degeneration of dopamine neurons in 6-hydroxydopamine rat model of Parkinson's disease does not involve activation of caspase-9 and caspase-3, Neurosci Res, 86, 317, 10.1002/jnr.21480

Kim, 2011, Dissociation of progressive dopaminergic neuronal death and behavioral impairments by Bax deletion in a mouse model of Parkinson's diseases, PloS One, 6, e25346, 10.1371/journal.pone.0025346

Burguillos, 2011, Caspase signalling controls microglia activation and neurotoxicity, Nature, 472, 319, 10.1038/nature09788

Venero, 2013, Caspases playing in the field of neuroinflammation: Old and new players, Dev Neurosci, 35, 88, 10.1159/000346155

Gomez-Sintes, 2011, GSK-3 mouse models to study neuronal apoptosis and neurodegeneration, Front Mol Neurosci, 4, 45, 10.3389/fnmol.2011.00045

Golpich, 2015, Glycogen synthase kinase-3 beta (GSK-3beta) signaling: Implications for Parkinson's disease, Pharmacol Res, 97, 16, 10.1016/j.phrs.2015.03.010