Covariance table: A fast automatic spatial continuity mapping
Tài liệu tham khảo
Bracewell, 1986
Carvalho, A.R., Carvalho, J.C., Shiguemori, E.H., Da Silva, J.D.S., Ramos, F.M., 2007. Neural network based models for the retrieval of methane concentration vertical profiles from remote sensing data. In: Anais XIII Simposio Brasileiro de Sensoriamento Remoto. Florianopolis, Brasil, vol. 21, p. 6.
Chu, 1993
Deutsch, 1998
Isaaks, 1992
Isaaks, 1989
Johnson, 2008, Implementing FFTs in practice
Marmion, 2009, Evaluation of consensus methods in predictive species distribution modelling, Divers. Distrib., 15, 59, 10.1111/j.1472-4642.2008.00491.x
Öztopal, 2006, Artificial neural network approach to spatial estimation of wind velocity data, Energy Convers. Manage., 47, 395, 10.1016/j.enconman.2005.05.009
Pyrcz, 2006, Semivariogram models based on geometric offsets, Math. Geol., 38, 475, 10.1007/s11004-005-9025-5
Raftery, 2005, Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 1155, 10.1175/MWR2906.1
Rigol, 2001, Artificial neural networks as a tool for spatial interpolation, Int. J. Geogr. Inf. Sci., 15, 323, 10.1080/13658810110038951
Rizzo, 1994, Characterization of aquifer properties using artificial neural networks: Neural kriging, Water Resour. Res., 30, 483, 10.1029/93WR02477
Yao, 2004, Reproduction of the mean, variance, and variogram model in spectral simulation, Math. Geol., 36, 487, 10.1023/B:MATG.0000029301.22150.28
Yoo, 2001