Contextualizing human dynamics: Understanding the semantics of movement trajectories with Wi-Fi data
Tài liệu tham khảo
Aizawa, 2003, An information-theoretic perspective of tf-idf measures, Inf. Process. Manage., 39, 45, 10.1016/S0306-4573(02)00021-3
Andrienko, 2009, Interactive visual clustering of large collections of trajectories, 3
Axhausen, 2002, Observing the rhythms of daily life: A six-week travel diary, Transportation, 29, 95, 10.1023/A:1014247822322
Barabasi, 2005, The origin of bursts and heavy tails in human dynamics, Nature, 435, 207, 10.1038/nature03459
Calabrese, 2013, Understanding individual mobility patterns from urban sensing data: a mobile phone trace example, Transport. Res. Part C: Emerg. Technol., 26, 301, 10.1016/j.trc.2012.09.009
Calabrese, 2010, Eigenplaces: Segmenting space through digital signatures, IEEE Pervasive Comput., 9, 78, 10.1109/MPRV.2009.62
Chen, 2014, Does food environment influence food choices? A geographical analysis through “tweets”, Appl. Geogr., 51, 82, 10.1016/j.apgeog.2014.04.003
Chiang, 2015, Assessing travel motivations of cultural tourists: A factor-cluster segmentation analysis, J. Informat. Optimizat. Sci., 36, 269, 10.1080/02522667.2014.996028
Cunche, 2014, Linking wireless devices using information contained in Wi-Fi probe requests, Pervasive Mob. Comput., 11, 56, 10.1016/j.pmcj.2013.04.001
Dodge, 2012, Movement similarity assessment using symbolic representation of trajectories, Int. J. Geograph. Informat. Sci., 26, 1563, 10.1080/13658816.2011.630003
Fabrikant, 2001, Formalizing semantic spaces for information access, Ann. Assoc. Am. Geogr., 91, 263, 10.1111/0004-5608.00242
Finch, 1939, Geographical science and social philosophy, Ann. Assoc. Am. Geogr., 29, 1, 10.1080/00045603909357185
Huang, 2016, Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us?, Int. J. Geograph. Informat. Sci., 30, 1873, 10.1080/13658816.2016.1145225
Kraemer, 2020, The effect of human mobility and control measures on the COVID-19 epidemic in China, Science, 368, 493, 10.1126/science.abb4218
Laube, 2014
Li, 2019, Reconstruction of human movement trajectories from large-scale low-frequency mobile phone data, Comput. Environ. Urban Syst., 77, 01346, 10.1016/j.compenvurbsys.2019.101346
Meneses, F., and Moreira, A., 2012. Large scale movement analysis from WiFi based location data. In: 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN): Sydney, IEEE: 1-9. 10.1109/IPIN.2012.6418885.
Pas, 1995, Intrapersonal variability in daily urban travel behavior: some additional evidence, Transportation, 22, 135, 10.1007/BF01099436
Roehl, 1992, Risk perceptions and pleasure travel: An exploratory analysis, J. Travel Res., 30, 17, 10.1177/004728759203000403
Shaw, 2016, Editorial: Human dynamics in the mobile and big data era, Int. J. Geograph. Informat. Sci., 30, 1687, 10.1080/13658816.2016.1164317
Shen, 2016, A framework for identifying activity groups from individual space-time profiles, Int. J. Geograph. Informat. Sci., 30, 1785, 10.1080/13658816.2016.1139119
Siła-Nowicka, 2016, Analysis of human mobility patterns from GPS trajectories and contextual information, Int. J. Geograph. Informat. Sci., 30, 881, 10.1080/13658816.2015.1100731
Traunmueller, 2018, Digital footprints: Using WiFi probe and locational data to analyze human mobility trajectories in cities, Comput. Environ. Urban Syst., 72, 4, 10.1016/j.compenvurbsys.2018.07.006
Vanhoef, M., et al., 2016. Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. Xi'an: ACM, 413-424.
Van Moorter, 2010, Identifying movement states from location data using cluster analysis, J. Wildl. Manag., 74, 588, 10.2193/2009-155
Vogel, 2011, Understanding bike-sharing systems using data mining: Exploring activity patterns, Procedia-Soc. Behav. Sci., 20, 514, 10.1016/j.sbspro.2011.08.058
Wang, 2018, Space, function, and vitality in historic areas: The tourismification process and spatial order of Shichahai in Beijing, Int. J. Tourism Res., 20, 335, 10.1002/jtr.2185
Wang, 2013, Measuring human queues using wifi signals, 235
Wu, 2019, Inferring demographics from human trajectories and geographical context, Comput. Environ. Urban Syst., 77, 10.1016/j.compenvurbsys.2019.101368
Xiao, 2011, Integrated Wi-Fi fingerprinting and inertial sensing for indoor positioning, 1
Zha, 2016, Unfolding large-scale online collaborative human dynamics, Proc. Natl. Acad. Sci., 113, 14627, 10.1073/pnas.1601670113