Transport mode detection based on mobile phone network data: A systematic review
Tài liệu tham khảo
Ahas, 2010, Using mobile positioning data to model locations meaningful to users of mobile phones, J. Urban Technol., 17, 3, 10.1080/10630731003597306
Alexander, 2015, Origin–destination trips by purpose and time of day inferred from mobile phone data, Transport. Res. Part C: Emerg. Technol. Big Data Transport. Traffic Eng., 58, 240, 10.1016/j.trc.2015.02.018
Asgari, 2016, Inferring user multimodal trajectories from cellular network metadata in metropolitan areas (PhD Dissertation), Institut National des
Bantis, 2017, Who you are is how you travel: a framework for transportation mode detection using individual and environmental characteristics, Transport. Res. Part C: Emerg. Technol., 80, 286, 10.1016/j.trc.2017.05.003
Bayir, 2010, Mobility profiler: a framework for discovering mobility profiles of cell phone users, Pervasive Mobile Comput. Human Behav. Ubiquit. Environ.: Model. Human Mobil. Patterns, 6, 435, 10.1016/j.pmcj.2010.01.003
Blondel, 2015, A survey of results on mobile phone datasets analysis, EPJ Data Sci., 4, 10, 10.1140/epjds/s13688-015-0046-0
Bohte, 2009, Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: a large-scale application in the Netherlands, Transport. Res. Part C: Emerg. Technol., 17, 285, 10.1016/j.trc.2008.11.004
Bolbol, 2012, Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification, Comput. Environ. Urban Syst. Special Issue: Adv. Geocomput., 36, 526, 10.1016/j.compenvurbsys.2012.06.001
Bricka, 2006, Comparative analysis of global positioning system-based and travel survey-based data, Transp. Res. Rec., 1972, 9, 10.1177/0361198106197200102
Budgen, 2006, Performing systematic literature reviews in software engineering, 1051
Calabrese, 2011, Real-time urban monitoring using cell phones: a case study in Rome, IEEE Trans. Intell. Transp. Syst., 12, 141, 10.1109/TITS.2010.2074196
Calabrese, 2013, Understanding individual mobility patterns from urban sensing data: a mobile phone trace example, Transport. Res. Part C: Emerg. Technol., 26, 301, 10.1016/j.trc.2012.09.009
Calabrese, 2015, Urban sensing using mobile phone network data: a survey of research, ACM Comput. Surv., 47, 1, 10.1145/2655691
Calabrese, 2011, Estimating origin-destination flows using mobile phone location data, IEEE Pervasive Comput., 10, 36, 10.1109/MPRV.2011.41
Charrad, 2014, NbClust: An R package for determining the relevant number of clusters in a data set, J. Stat. Softw., 61, 10.18637/jss.v061.i06
Chen, 2014, From traces to trajectories: how well can we guess activity locations from mobile phone traces?, Transport. Res. Part C: Emerg. Technol., 46, 326, 10.1016/j.trc.2014.07.001
Chen, 2016, The promises of big data and small data for travel behavior (aka human mobility) analysis, Transport. Res. Part C: Emerg. Technol., 68, 285, 10.1016/j.trc.2016.04.005
Chin Jiaqi, 2018
Dabiri, 2018, Inferring transportation modes from GPS trajectories using a convolutional neural network, Transport. Res. Part C: Emerg. Technol., 86, 360, 10.1016/j.trc.2017.11.021
Danafar, 2017, Bayesian framework for mobility pattern discovery using mobile network events, 1070
de Montjoye, 2013, Unique in the Crowd: the privacy bounds of human mobility, Sci. Rep., 3, 1376, 10.1038/srep01376
Diao, 2016, Inferring individual daily activities from mobile phone traces: a Boston example, Environ. Plann. B Plann. Des., 43, 920, 10.1177/0265813515600896
Doyle, 2011, Utilising mobile phone billing records for travel mode discovery
Eftekhari, 2016, An inference engine for smartphones to preprocess data and detect stationary and transportation modes, Transport. Res. Part C: Emerg. Technol., 69, 313, 10.1016/j.trc.2016.06.005
Ester, 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, 226
Feng, 2013, Transportation mode recognition using GPS and accelerometer data, Transport. Res. Part C: Emerg. Technol., 37, 118, 10.1016/j.trc.2013.09.014
García, 2016, Big data analytics for a passenger-centric air traffic management system
González, 2008, Understanding individual human mobility patterns, Nature, 453, 779, 10.1038/nature06958
Holleczek, 2015, Traffic measurement and route recommendation system for mass rapid transit (MRT), 1859
Horn, 2017, QZTool—automatically generated origin-destination matrices from cell phone trajectories, 823, 10.1007/978-3-319-41682-3_68
Horn, 2015, Deriving public transportation timetables with large-scale cell phone data, Procedia Comput. Sci., 52, 67, 10.1016/j.procs.2015.05.026
Horn, 2014, Detecting outliers in cell phone data: correcting trajectories to improve traffic modeling, Transp. Res. Rec., 2405, 49, 10.3141/2405-07
Hui, 2017, Investigating the use of anonymous cellular phone data to determine intercity travel volumes and modes
Hui, T.Y., 2017. Investigating the Use of Anonymous Cellular Data for Intercity Travel Patterns in Alberta (Master thesis). University of Alberta. https://doi.org/10.7939/R3QN5ZR65.
Iovan, 2013, Moving and calling: mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies, 247, 10.1007/978-3-319-00615-4_14
Järv, 2017, Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation, Int. J. Geograph. Informat. Sci., 31, 1630, 10.1080/13658816.2017.1287369
Jiang, 2013, A review of urban computing for mobile phone traces: current methods, challenges and opportunities
Kalatian, 2016, Travel mode detection exploiting cellular network data, MATEC Web Conf., 81, 03008, 10.1051/matecconf/20168103008
Larijani, 2015, Investigating the mobile phone data to estimate the origin destination flow and analysis; case study: paris region, Transp. Res. Procedia, 6, 64, 10.1016/j.trpro.2015.03.006
Lee, 2006, Modeling steady-state and transient behaviors of user mobility: formulation, analysis, and application, 85
Li, 2017, Estimating crowd flow and crowd density from cellular data for mass rapid transit
Louail, 2014, From mobile phone data to the spatial structure of cities, Sci. Rep., 4, 5276, 10.1038/srep05276
Miao, 2016
Moher, 2009, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement, PLoS Med, 6, e1000097, 10.1371/journal.pmed.1000097
Naboulsi, 2016, Large-scale mobile traffic analysis: a survey, IEEE Commun. Surveys Tutorials, 18, 124, 10.1109/COMST.2015.2491361
Newson, 2009, Hidden Markov map matching through noise and sparseness, 336
Ogle, 2005, Georgia’s Commute Atlanta value pricing program: recruitment methods and travel diary response rates, Transport. Res. Record: J. Transport. Res. Board, 1931, 28, 10.1177/0361198105193100104
Oliver, 2015, Mobile network data for public health: opportunities and challenges, Front Public Health, 3, 10.3389/fpubh.2015.00189
Petticrew, 2006
Phithakkitnukoon, 2017, Inferring social influence in transport mode choice using mobile phone data, EPJ Data Sci., 6, 11, 10.1140/epjds/s13688-017-0108-6
Poonawala, 2016, Singapore in motion: insights on public transport service level through farecard and mobile data analytics, 589
Prelipcean, 2017, Transportation mode detection – an in-depth review of applicability and reliability, Transp. Rev., 37, 442, 10.1080/01441647.2016.1246489
Prelipcean, 2016, Measures of transport mode segmentation of trajectories, Int. J. Geograph. Informat. Sci., 30, 1763, 10.1080/13658816.2015.1137297
Qu, 2015, Transportation mode split with mobile phone data, 285
Rojas, 2016, Comprehensive review of travel behavior and mobility pattern studies that used mobile phone data, Transport. Res. Record: J. Transport. Res. Board, 2563, 71, 10.3141/2563-11
Schlaich, 2010, Generating trajectories from mobile phone data
Schönfelder, 2002, Exploring the potentials of automatically collected GPS data for travel behaviour analysis: a Swedish data source, Institut für Geoinformatik, Universität Münster.
Schuessler, 2009, Processing raw data from global positioning systems without additional information, Transport. Res. Record: J. Transport. Res. Board, 2105, 28, 10.3141/2105-04
Shad, 2012, Cell oscillation resolution in mobility profile building, Int. J. Comput. Sci. Issues, 9, 205
Shen, 2014, Review of GPS travel survey and GPS data-processing methods, Transp. Rev., 34, 316, 10.1080/01441647.2014.903530
Smoreda, 2013, Spatiotemporal data from mobile phones for personal mobility assessment, 745
Steenbruggen, 2013, Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities, GeoJournal, 78, 223, 10.1007/s10708-011-9413-y
Wang, 2018, On data processing required to derive mobility patterns from passively-generated mobile phone data, Transport. Res. Part C: Emerg. Technol., 87, 58, 10.1016/j.trc.2017.12.003
Wang, 2010, Transportation mode inference from anonymized and aggregated mobile phone call detail records, 318
Wang, 2018, Applying mobile phone data to travel behaviour research: a literature review, Travel Behav. Soc., 11, 141, 10.1016/j.tbs.2017.02.005
Widhalm, 2015, Discovering urban activity patterns in cell phone data, Transportation, 42, 597, 10.1007/s11116-015-9598-x
Wolf, 2000
Wu, 2016, Travel mode detection based on GPS raw data collected by smartphones: a systematic review of the existing methodologies, Information, 7, 67, 10.3390/info7040067
Wu, 2013, Studying intercity travels and traffic using cellular network data
Wu, 2014, Oscillation resolution for mobile phone cellular tower data to enable mobility modelling, 321
Xu, 2011, Transportation Modes Identification from Mobile Phone Data Using Probabilistic Models, 359
Yamada, 2016, Travel estimation using Control Signal Records in cellular networks and geographical information, 138
Yuan, 2016, Exploring georeferenced mobile phone datasets – a survey and reference framework, Geography Compass, 10, 239, 10.1111/gec3.12269
Zhao, 2016, Understanding the bias of call detail records in human mobility research, Int. J. Geograph. Inform. Sci., 30, 1738, 10.1080/13658816.2015.1137298