Communicating the status of volcanic activity: revising New Zealand’s volcanic alert level system

Springer Science and Business Media LLC - Tập 3 - Trang 1-16 - 2014
Sally H Potter1, Gill E Jolly2, Vincent E Neall3, David M Johnston4, Bradley J Scott2
1GNS Science, Lower Hutt, New Zealand
2GNS Science, Wairakei Research Centre, Taupo, New Zealand
3Massey University, Palmerston North, New Zealand
4Joint Centre for Disaster Research, Massey University, Wellington, New Zealand

Tóm tắt

The communication of scientific information to stakeholders is a critical component of an effective Volcano Early Warning System. Volcanic Alert Level (VAL) systems are used in many countries as a tool within early warning systems to communicate complex volcanic information in a simple form, from which response decisions can be made. Such communication tools need to meet the requirements of a wide range of end-users, including emergency managers, the aviation industry, media, and the public. They also need to be usable by scientists who determine the alert levels based on integration and interpretation of volcano observations and monitoring data. This paper presents an exploratory review of New Zealand’s 20-year old VAL system, and for the first time globally, describes the development of a VAL system based on a robust qualitative ethnographic methodology. This involved semi-structured interviews of scientists and VAL end-users, document analysis, and observations of scientists over three years as they set the VAL during multiple unrest and eruption crises. The transdisciplinary nature of this research allows the system to be revised with direct input by end-users of the system, highlighting the benefits of using social science methodologies in developing or revising warning systems. The methodology utilised in this research is applicable worldwide, and could be used to develop warning systems for other hazards. It was identified that there are multiple possibilities for foundations of VAL systems, including phenomena, hazard, risk, and magmatic processes. The revised VAL system is based on the findings of this research, and was implemented in collaboration with New Zealand’s Ministry of Civil Defence and Emergency Management in July 2014. It is used for all of New Zealand’s active volcanoes, and is understandable, intuitive, and informative. The complete process of exploring a current VAL system, revising it, and introducing it to New Zealand society is described.

Tài liệu tham khảo

Balsiger PW: Supradisciplinary research practices: history, objectives and rationale. Futures 2004, 36(4):407–421. doi:10.1016/j.futures.2003.10.002 doi:10.1016/j.futures.2003.10.002 10.1016/j.futures.2003.10.002

Corbin JM, Strauss A: Basics Of Qualitative Research: Techniques And Procedures For Developing Grounded Theory. Sage Publications Inc, Los Angeles, CA; 2008.

Donovan A, Oppenheimer C, Bravo M: Social studies of volcanology: knowledge generation and expert advice on active volcanoes. Bull Volcanol 2012, 74(3):677–689. doi:10.1007/s00445–011–0547-z doi:10.1007/s00445-011-0547-z 10.1007/s00445-011-0547-z

Donovan A, Oppenheimer C, Bravo M: The use of belief-based probabilistic methods in volcanology: scientists' views and implications for risk assessments. J Volcanol Geotherm Res 2012, 247–248: 168–180. 10.1016/j.jvolgeores.2012.08.011

Dow K, Cutter SL: Crying wolf: repeat responses to hurricane evacuation orders. Coast Manag 1997, 26(4):237–251. 10.1080/08920759809362356

Fearnley CJ: Standardising the USGS Volcano Alert Level System: Acting In The Context Of Risk, Uncertainty And Complexity. Ph.D. Thesis. University College London, London, UK; 2011.

Fearnley CJ: Assigning a volcano alert level: negotiating uncertainty, risk, and complexity in decision-making processes. Environ Plan A 2013, 45(8):1891–1911. 10.1068/a4542

Fearnley CJ, McGuire WJ, Davies G, Twigg J: Standardisation of the USGS Volcano Alert Level System (VALS): analysis and ramifications. Bull Volcanol 2012, 74(9):2023–2036. 10.1007/s00445-012-0645-6

Fischhoff B: Risk perception and communication unplugged: twenty years of process. Risk Anal 1995, 15(2):137–145. 10.1111/j.1539-6924.1995.tb00308.x

Fiske RS: Volcanologists, Journalists, And The Concerned Local Public: A Tale Of Two Crises In The Eastern Caribbean. In Explosive volcanism: inception, evolution, and hazards. National Academy Press, Washington D.C; 1984:170.

GeoNet (2014) GeoNet volcanic activity information. , accessed on 8 August 2014, [http://geonet.org.nz/volcano/]

GNS Science and MCDEM (2009) Memorandum of Understanding between the Ministry of Civil Defence & Emergency Management (MCDEM) and Institute of Geological and Nuclear Sciences Limited (GNS Science) for the engagement of geoscience and Civil Defence Emergency Management. Wellington, New Zealand, p 18

IDNDR Early Warning Programme Convenors Guiding Principles For Effective Early Warning. Convenors of the International Expert Groups on Early Warning. United Nations International Decade for Natural Disaster Reduction, Geneva, Switzerland; 1997.

JMA (2014) Japan Meteorological Agency Volcanic Alert Level system. , accessed 21 May 2014, [http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/kaisetsu/English/level.html]

Lechner P: Living With Volcanic Ash Episodes In Civil Aviation: the New Zealand Volcanic Ash Advisory System (VAAS) and the International Airways Volcano Watch (IAVW) Civil Aviation Authority of New Zealand. 2012.

Leonard GS, Johnston DM, Paton D, Christianson A, Becker J, Keys H: Developing effective warning systems: ongoing research at Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 2008, 172(3–4):199–215. doi:10.1016/j.jvolgeores.2007.12.008 doi:10.1016/j.jvolgeores.2007.12.008 10.1016/j.jvolgeores.2007.12.008

Mader GG, Blair ML: Living with a Volcanic Threat: Response to Volcanic Hazards, Long Valley, California. William Spangle and Associates, Portola Valley, California; 1987.

Martin RJ: Post-Exercise Report: Exercise Nga Puia. Bay of Plenty Regional Council, Whakatane; 1992.

MCDEM The Guide to the National Civil Defence Emergency Management Plan 2006. Ministry of Civil Defence & Emergency Management, Wellington; 2006.

Metzger P, D'Ercole R, Sierra A: Political and scientific uncertainties in volcanic risk management: the yellow alert in Quito in October 1998. GeoJournal 1999, 49(2):213–221. 10.1023/A:1007137908821

Mileti DS, Sorensen JH: Communication Of Emergency Public Warnings - A Social Science Perspective And State-Of-The-Art Assessment. Oak Ridge National Laboratory, Oak Ridge, TN; 1990.

MVO (2014) Montserrat Volcano Observatory Hazard Level System for Soufriere Hills Volcano. , accessed on 21 May, [http://www.mvo.ms/pub/Hazard_Level_System/HLS-20111104.pdf]

Nairn IA, Scott BJ: Scientific management of the 1994 Rabaul eruption: Lessons for New Zealand. Science Report 95/26. Institute of Geological & Nuclear Sciences Limited, Lower Hutt; 1995.

Newhall CG (2000) Volcano warnings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, pp 1185–1197

Newhall CG, Punongbayan RS: The Narrow Margin Of Successful Volcanic-Risk Mitigation. In Monitoring And Mitigation Of Volcanic Hazards. Edited by: Scarpa R, Tilling RI. Spinger Verlag, San Diego, CA; 1996:807–838. 10.1007/978-3-642-80087-0_25

Paton D, Johnston DM, Houghton B, Flin R, Ronan KR, Scott BJ: Managing natural hazard consequences: information management and decision making. J Am Soc Prof Emerg Managers 1999, 6: 37–48.

Patton MQ: Qualitative Research And Evaluation Methods. Sage, Thousand Oaks, CA; 2002.

PHIVOLCS (2014) PHIVOLCS Taal Volcano Alert Signal. , accessed on 21 May 2014, [http://www.phivolcs.dost.gov.ph/index.php?option=com_content&view=article&id=815%3Ataal-volcano-alertsignal&catid=83%3Avolcano-alert-levels&Itemid=86] PHIVOLCS (2014) PHIVOLCS Taal Volcano Alert Signal. , accessed on 21 May 2014

Potter SH: Communicating the Status Of Volcanic Activity in New Zealand, With Specific Application To Caldera Unrest. PhD Thesis. Massey University, Wellington, New Zealand; 2014.

Scott BJ, Travers J: Volcano monitoring in NZ and links to SW Pacific via the Wellington VAAC. Nat Hazards 2009, 51(2):263–273. doi:10.1007/s11069–009–9354–7 doi:10.1007/s11069-009-9354-7 10.1007/s11069-009-9354-7

Sherburn S, Bryan CJ: the eruption detection system: Mt. Ruapehu, New Zealand. Seismol Res Lett 1999, 70(5):505–511. doi:10.1785/gssrl.70.5.505 doi:10.1785/gssrl.70.5.505 10.1785/gssrl.70.5.505

Stake RE: The Art Of Case Study Research. Sage Publications Inc, Thousand Oaks, CA; 1995.

the GeoNet website (2014) GeoNet Volcano Alert Bulletins. , accessed on 28 May 2014, [http://info.geonet.org.nz/blog/volc]

UN/ISDR Terminology on Disaster Risk Reduction. United Nations International Strategy for Disaster Reduction, Geneva, Switzerland; 2009.

UN/ISDR PPEW Developing Early Warning Systems, A Checklist: Third International Conference On Early Warning (EWC III), 27–29 March 2006. United Nations International Strategy for Disaster Reduction Platform for the Promotion of Early Warning, Bonn, Germany; 2006.

Volcanic Impact Study Group ash impact posters (2014) , accessed on 10 January 2014, [http://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/Eruption-What-to-do/Ash-Impact-Posters]