Cloud-based non-invasive cognitive breath monitoring system for patients in health-care system
Tóm tắt
Tài liệu tham khảo
Penzel, T., Glos, M., Fietze, I., Herberger, S., Pillar, G.: Distinguish Obstructive and central sleep apnea by portable peripheral arterial tonometry. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), , pp. 2780–2783, (2020) https://doi.org/10.1109/EMBC44109.2020.9175700
Pitkänen, H., et al.: Gamma power of electroencephalogram arousal is modulated by respiratory event type and severity in obstructive sleep apnea. IEEE Trans. Biomed. Eng. 69(4), 1417–1423 (2022). https://doi.org/10.1109/TBME.2021.3118229
Nikkonen, S., et al.: Automatic respiratory event scoring in obstructive sleep apnea using a long short-term memory neural network. IEEE J. Biomed. Health Inform. 25(8), 2917–2927 (2021). https://doi.org/10.1109/JBHI.2021.3064694
Ferrer-Lluis, Y., Castillo-Escario, M., Glos, I.F., Penzel, T., Jané, R.: Sleep apnea & chronic obstructive pulmonary disease: overlap syndrome dynamics in patients from an epidemiological study. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5574–5577 (2021) https://doi.org/10.1109/EMBC46164.2021.9630515.
Nakari, E.K., Tajima, Y., Takadama, K.: Non-contact sleep apnea syndrome detection based on what random forests learned. In: 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), pp. 240–244 (2020) https://doi.org/10.1109/LifeTech48969.2020.1570619209.
Hanif, U., et al.: Estimation of apnea-hypopnea index using deep learning on 3-D craniofacial scans. IEEE J. Biomed. Health Inform. 25(11), 4185–4194 (2021). https://doi.org/10.1109/JBHI.2021.3078127
Lazazzera, R., et al.: Detection and classification of sleep apnea and hypopnea using PPG and SpO2 signals. IEEE Trans. Biomed. Eng. 68(5), 1496–1506 (2021). https://doi.org/10.1109/TBME.2020.3028041
Deviaene, M., et al.: Multilevel interval coded scoring to assess the cardiovascular status of sleep apnea patients using oxygen saturation markers. IEEE Trans. Biomed. Eng. 67(10), 2839–2848 (2020). https://doi.org/10.1109/TBME.2020.2972126
Shah, S.T.U., Badshah, F., Dad, F., Amin, N., Jan, A.M.: Cloud-assisted IoT-based smart respiratory monitoring system for asthma patients. Appl Intell Technol Healthc (2019). https://doi.org/10.1007/978-3-319-96139-2_8
Pocket Guide to COPD Diagnosis, Management, and Prevention, A Guide for Health Care Professionals, 2020 Report. © 2020 Global Initiative for Chronic Obstructive Lung Disease, Inc. (2020)
Xiong, Q.: Design and research of non-invasive sleep monitor. 90. (2023) https://doi.org/10.1117/12.2682986.
Hu, X., Naya, K., Li, P., Miyazaki, T., Wang, K., Sun, Y.: Non-invasive sleeping posture recognition and body movement detection based on RFID. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, pp. 1817–1820 (2018) https://doi.org/10.1109/Cybermatics_2018.2018.00302.
Zhang, H., Zhu, W., Ye, S., Li, S., Yu, B., Pang, Z., Nie, R.: Monitoring of non-invasive vital signs for detection of sleep apnea. J. Mech. Med. Biol. (2021). https://doi.org/10.1142/s0219519421400078
Guerrero, G., Le Rolle, V., Loiodice, C., Amblard, A., Pépin, J.-L., Hernández, A.: Modeling patient-specific desaturation patterns in sleep apnea. IEEE Trans. Biomed. Eng. 69(4), 1502–1511 (2022). https://doi.org/10.1109/TBME.2021.3121170
John, K.K., Nundy, B.C., John, D.: SomnNET: an SpO2 based deep learning network for sleep apnea detection in smartwatches. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1961–1964 (2021) https://doi.org/10.1109/EMBC46164.2021.9631037.
Khan, F., Tarimer, I., Alwageed, H.S., Karadağ, B.C., Fayaz, M., Abdusalomov, A.B., Cho, Y.-I.: Effect of feature selection on the accuracy of music popularity classification using machine learning algorithms. Electronics 11(21), 3518 (2022). https://doi.org/10.3390/electronics11213518
Sebastian, P.A. Cistulli, G.C., Chazal, P.: Identifying the predominant site of upper airway collapse in obstructive sleep apnoea patients using snore signals. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2728–2731 (2020) https://doi.org/10.1109/EMBC44109.2020.9175626.
Nassi, T.E., et al.: Automated scoring of respiratory events in sleep with a single effort belt and deep neural networks. IEEE Trans. Biomed. Eng. 69(6), 2094–2104 (2022). https://doi.org/10.1109/TBME.2021.3136753
Vaquerizo-Villar, F., et al.: Automatic sleep staging in children with sleep apnea using photoplethysmography and convolutional neural networks. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 216–219 (2021) https://doi.org/10.1109/EMBC46164.2021.9629995.
Smbatovna, S.K., Alekseevna, M.L.: Recognition of sleep apnea by EEG using nonlinear dynamics methods. In: 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp. 0009-0011 (2021) https://doi.org/10.1109/USBEREIT51232.2021.9455089
Joergensen, V.H., Hanif, U., Jennum, P., Mignot, E., Helge, A.W., Sorensen, H.B.D.: Automatic segmentation to cluster patterns of breathing in sleep apnea. In: 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 164–168 (2021) https://doi.org/10.1109/EMBC46164.2021.9629624.
Hussain, S.M., Wahid, A., Shah, M.A., Akhunzada, A., Khan, F., Amin, N., Arshad, S., Ali, I.: Seven pillars to achieve energy efficiency in high-performance computing data centers. In: Recent trends and advances in wireless and IoT-enabled networks, Springer: New York, pp. 93–105 (2019) https://doi.org/10.1007/978-3-319-99966-1_9
Freycenon, N., Longo, R., Simon, L.: Estimation of heart rate from tracheal sounds recorded for the sleep apnea syndrome diagnosis. IEEE Trans. Biomed. Eng. 68(10), 3039–3047 (2021). https://doi.org/10.1109/TBME.2021.3061734
Al-kahtani, M.S., Khan, F., Taekeun, W.: Application of internet of things and sensors in healthcare. Sensors 22(15), 5738 (2022). https://doi.org/10.3390/s22155738
Shao, S., Han, G., Wang, T., Song, C., Yao, C., Hou, J.: Obstructive sleep apnea detection scheme based on manually generated features and parallel heterogeneous deep learning model under IoMT. IEEE J Biomed Health Inform (2022). https://doi.org/10.1109/JBHI.2022.3166859