Clinical prediction models for bronchopulmonary dysplasia: a systematic review and external validation study

Springer Science and Business Media LLC - Tập 13 - Trang 1-20 - 2013
Wes Onland1, Thomas P Debray2, Matthew M Laughon3, Martijn Miedema1, Filip Cools4, Lisa M Askie5, Jeanette M Asselin6, Sandra A Calvert7, Sherry E Courtney8, Carlo Dani9, David J Durand6, Neil Marlow10, Janet L Peacock11, J Jane Pillow12, Roger F Soll13, Ulrich H Thome14, Patrick Truffert15, Michael D Schreiber16, Patrick Van Reempts17, Valentina Vendettuoli18, Giovanni Vento19, Anton H van Kaam1, Karel G Moons2, Martin Offringa1,20
1Department of Neonatology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
2Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
3Department of Pediatrics, University of North Carolina, Chapel Hill, USA.
4Department of Neonatology, Universitair Ziekenhuis Brussel, Brussel, Belgium
5NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
6Division of Neonatology, Children's Hospital and Research Center Oakland, Oakland, USA
7Neonatal Unit—Department of Child Health, St George's Hospital, London, UK
8Department of Neonatology, University of Arkansas for Medical Sciences, Little Rock, USA
9Department of Surgical and Medical Critical Care, University of Florence, Florence, Italy
10UCL Institute of Women’s Health, University College London, London, UK
11Health and Social Care Research, King’s College London, London, UK
12Centre for Neonatal Research and Education, Schools of Anatomy, Physiology and Human Biology and Paediatrics and Child Health, University of Western Australia, Subiaco, Australia
13Department of Pediatrics, University of Vermont College of Medicine, Burlington, USA
14Division of Neonatology, University Hospital for Children and Adolescents, Women's and Children's Hospital, Leipzig, Germany
15Department of Neonatal Medicine, Hospital Jeanne of Flanders, University hospital of Lille, Lille, France
16Department of Pediatrics, University of Chicago Medical Center, Chicago, USA
17University of Antwerp and Antwerp University Hospital, Edegem (Antwerp), Belgium
18NICU, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
19Division of Neonatology–Department of Paediatrics, Policlinico “A. Gemelli”-Università Cattolica S. Cuore, Rome, Italy
20Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Canada

Tóm tắt

Bronchopulmonary dysplasia (BPD) is a common complication of preterm birth. Very different models using clinical parameters at an early postnatal age to predict BPD have been developed with little extensive quantitative validation. The objective of this study is to review and validate clinical prediction models for BPD. We searched the main electronic databases and abstracts from annual meetings. The STROBE instrument was used to assess the methodological quality. External validation of the retrieved models was performed using an individual patient dataset of 3229 patients at risk for BPD. Receiver operating characteristic curves were used to assess discrimination for each model by calculating the area under the curve (AUC). Calibration was assessed for the best discriminating models by visually comparing predicted and observed BPD probabilities. We identified 26 clinical prediction models for BPD. Although the STROBE instrument judged the quality from moderate to excellent, only four models utilised external validation and none presented calibration of the predictive value. For 19 prediction models with variables matched to our dataset, the AUCs ranged from 0.50 to 0.76 for the outcome BPD. Only two of the five best discriminating models showed good calibration. External validation demonstrates that, except for two promising models, most existing clinical prediction models are poor to moderate predictors for BPD. To improve the predictive accuracy and identify preterm infants for future intervention studies aiming to reduce the risk of BPD, additional variables are required. Subsequently, that model should be externally validated using a proper impact analysis before its clinical implementation.

Tài liệu tham khảo

Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, Hale EC, Newman NS, Schibler K, Carlo WA, et al: Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010, 126 (3): 443-456. 10.1542/peds.2009-2959.

Lundqvist P, Kallen K, Hallstrom I, Westas LH: Trends in outcomes for very preterm infants in the southern region of Sweden over a 10-year period. Acta Paediatr. 2009, 98 (4): 648-653. 10.1111/j.1651-2227.2008.01155.x.

Short EJ, Kirchner HL, Asaad GR, Fulton SE, Lewis BA, Klein N, Eisengart S, Baley J, Kercsmar C, Min MO, et al: Developmental sequelae in preterm infants having a diagnosis of bronchopulmonary dysplasia: analysis using a severity-based classification system. Arch Pediatr Adolesc Med. 2007, 161 (11): 1082-1087. 10.1001/archpedi.161.11.1082.

Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA, Wrage LA, Poole K: Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005, 116 (6): 1353-1360. 10.1542/peds.2005-0249.

Schmidt B, Roberts R, Millar D, Kirpalani H: Evidence-based neonatal drug therapy for prevention of bronchopulmonary dysplasia in very-low-birth-weight infants. Neonatology. 2008, 93 (4): 284-287. 10.1159/000121453.

Hayden JA, Cote P, Bombardier C: Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med. 2006, 144 (6): 427-437. 10.7326/0003-4819-144-6-200603210-00010.

Janssen KJ, Donders AR, Harrell FE, Vergouwe Y, Chen Q, Grobbee DE, Moons KG: Missing covariate data in medical research: to impute is better than to ignore. J Clin Epidemiol. 2010, 63 (7): 721-727. 10.1016/j.jclinepi.2009.12.008.

Harrell FE, Lee KL, Mark DB: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996, 15 (4): 361-387. 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4.

Ryan SW, Wild NJ, Arthur RJ, Shaw BN: Prediction of chronic neonatal lung disease in very low birthweight neonates using clinical and radiological variables. Arch Dis Child Fetal Neonatal Ed. 1994, 71 (1): F36-F39. 10.1136/fn.71.1.F36.

Rozycki HJ, Narla L: Early versus late identification of infants at high risk of developing moderate to severe bronchopulmonary dysplasia. Pediatr Pulmonol. 1996, 21 (6): 345-352. 10.1002/(SICI)1099-0496(199606)21:6<345::AID-PPUL1>3.0.CO;2-K.

Romagnoli C, Zecca E, Tortorolo L, Vento G, Tortorolo G: A scoring system to predict the evolution of respiratory distress syndrome into chronic lung disease in preterm infants. Intensive Care Med. 1998, 24 (5): 476-480. 10.1007/s001340050599.

Yoder BA, Anwar MU, Clark RH: Early prediction of neonatal chronic lung disease: a comparison of three scoring methods. Pediatr Pulmonol. 1999, 27 (6): 388-394. 10.1002/(SICI)1099-0496(199906)27:6<388::AID-PPUL5>3.0.CO;2-N.

Kim YD, Kim EA, Kim KS, Pi SY, Kang W: Scoring method for early prediction of neonatal chronic lung disease using modified respiratory parameters. J Korean Med Sci. 2005, 20 (3): 397-401. 10.3346/jkms.2005.20.3.397.

Cunha GS, Mezzacappa-Filho F, Ribeiro JD: Risk factors for bronchopulmonary dysplasia in very low birth weight newborns treated with mechanical ventilation in the first week of life. J Trop Pediatr. 2005, 51 (6): 334-340. 10.1093/tropej/fmi051.

Choi EN, Ramgung R, Koo HK: Early prediction of Bronchopulmonary Dysplasia (BPD) in Very Low Birth Weight Infants with Mechanical Ventilation in the First Week of Life [abstract]. E-PAS. 2006, 59: 5561369-

Ambalavanan N, Van Meurs KP, Perritt R, Carlo WA, Ehrenkranz RA, Stevenson DK, Lemons JA, Poole WK, Higgins RD: Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure. J Perinatol. 2008, 28 (6): 420-426. 10.1038/jp.2008.18.

Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, Stoll BJ, Buchter S, Laptook AR, Ehrenkranz RA, et al: Prediction of Bronchopulmonary Dysplasia by Postnatal Age in Extremely Premature Infants. Am J Respir Crit Care Med. 2011, 183 (12): 1715-1722. 10.1164/rccm.201101-0055OC.

Subhedar NV, Tan AT, Sweeney EM, Shaw NJ: A comparison of indices of respiratory failure in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000, 83 (2): F97-F100. 10.1136/fn.83.2.F97.

Srisuparp P, Marks JD, Khoshnood B, Schreiber MD: Predictive power of initial severity of pulmonary disease for subsequent development of bronchopulmonary dysplasia. Biol Neonate. 2003, 84 (1): 31-36. 10.1159/000071440.

Choukroun ML, Tayara N, Fayon M, Demarquez JL: Early respiratory system mechanics and the prediction of chronic lung disease in ventilated preterm neonates requiring surfactant treatment. Biol Neonate. 2003, 83 (1): 30-35. 10.1159/000067015.

Fowlie PW, Gould CR, Tarnow-Mordi WO, Strang D: Measurement properties of the Clinical Risk Index for Babies–reliabilty, validity beyond the first 12 hours, and responsiveness over 7 days. Crit Care Med. 1998, 26 (1): 163-168. 10.1097/00003246-199801000-00033.

Hentschel J, Friedel C, Maier RF, Bassir C, Obladen M: Predicting chronic lung disease in very low birthweight infants: comparison of 3 scores. J Perinat Med. 1998, 26 (5): 378-383. 10.1515/jpme.1998.26.5.378.

Chien LY, Whyte R, Thiessen P, Walker R, Brabyn D, Lee SK: Snap-II predicts severe intraventricular hemorrhage and chronic lung disease in the neonatal intensive care unit. J Perinatol. 2002, 22 (1): 26-30. 10.1038/sj.jp.7210585.

The International Neonatal Network: The CRIB (clinical risk index for babies) score: a tool for assessing initial neonatal risk and comparing performance of neonatal intensive care units. Lancet. 1993, 342 (8865): 193-198. 10.1016/0140-6736(93)92296-6.

Bancalari E, Claure N: Definitions and diagnostic criteria for bronchopulmonary dysplasia. Semin Perinatol. 2006, 30 (4): 164-170. 10.1053/j.semperi.2006.05.002.

Walsh MC, Yao Q, Gettner P, Hale E, Collins M, Hensman A, Everette R, Peters N, Miller N, Muran G, et al: Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics. 2004, 114 (5): 1305-1311. 10.1542/peds.2004-0204.

Messerschmidt A, Olischar M, Birnbacher R, Sauer A, Weber M, Puschnig D, Unterasinger L, Pollak A, Leitich H: Is it possible to make a reliable prognosis within the first hour of life for very low birth weight infants delivered after preterm premature rupture of membranes?. Neonatology. 2011, 99 (2): 146-152. 10.1159/000313969.

Harrell FE: Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. 2001, Springer: New York

Regev RH, Reichman B: Prematurity and intrauterine growth retardation–double jeopardy?. Clin Perinatol. 2004, 31 (3): 453-473. 10.1016/j.clp.2004.04.017.

Laughon M, Allred EN, Bose C, O'Shea TM, Van Marter LJ, Ehrenkranz RA, Leviton A: Patterns of respiratory disease during the first 2 postnatal weeks in extremely premature infants. Pediatrics. 2009, 123 (4): 1124-1131. 10.1542/peds.2008-0862.

Lavoie PM, Pham C, Jang KL: Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics. 2008, 122 (3): 479-485. 10.1542/peds.2007-2313.

Janssen KJ, Vergouwe Y, Donders AR, Harrell FE, Chen Q, Grobbee DE, Moons KG: Dealing with missing predictor values when applying clinical prediction models. Clin Chem. 2009, 55 (5): 994-1001. 10.1373/clinchem.2008.115345.

The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2431/13/207/prepub