Climate transition in the Asia inland at 0.8–0.6 Ma related to astronomically forced ice sheet expansion
Tài liệu tham khảo
Chen, 2019, Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales, Earth Sci. Rev., 192, 337, 10.1016/j.earscirev.2019.03.005
Curio, 2015, A 12 year high resolution climatology of atmospheric water transport over the Tibetan plateau, Earth Syst. Dynam., 6, 109124, 10.5194/esd-6-109-2015
De Garidel-Thoron, 2005, Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, 433, 294, 10.1038/nature03189
deBoer, 2014, Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene, Nat. Commun., 5, 2999, 10.1038/ncomms3999
Ding, 1995, Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years, Quat. Res., 44, 149, 10.1006/qres.1995.1059
Ding, 2002, The loess record in southern Tajikistan and correlation with Chinese loess, Earth Planet Sci. Lett., 200, 387, 10.1016/S0012-821X(02)00637-4
Ding, 2005, Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution, Earth Planet Sci. Lett., 237, 45, 10.1016/j.epsl.2005.06.036
Donges, 2011, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci. U. S. A, 108, 20423, 10.1073/pnas.1117052108
Elderfield, 2012, Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition, Science, 337, 704, 10.1126/science.1221294
Eroglu, 2016, See–saw relationship of the Holocene East Asian–Australian summer monsoon, Nat. Commun., 7, 12929, 10.1038/ncomms12929
Fang, 2002, Loess in the tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern xinjiang, Chin. Sci. Bull., 47, 1381, 10.1360/02tb9305
Ghil, 1994, Cryothermodynamics: the chaotic dynamics of paleoclimate, Phys. Nonlinear Phenom., 77, 130, 10.1016/0167-2789(94)90131-7
Guo, 2000, Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China, Geophys. Res. Lett., 27, 1751, 10.1029/1999GL008419
Guo, 2004, Late miocene–pliocene development of asian aridification as recorded in the red-earth formation in northern China, Global Planet. Change, 41, 135, 10.1016/j.gloplacha.2004.01.002
Han, 2014, Tibet forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: carbonate isotope records from deep drilling in the Qaidam salt playa, NE Tibet, Global Planet. Change, 116, 68, 10.1016/j.gloplacha.2014.02.006
Han, 2014, Wind erosion on the north-eastern Tibetan Plateau: constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin, Earth Surf. Process. Landforms, 39, 779, 10.1002/esp.3483
Herb, 2013, Environmental implications of the magnetic record in Pleistocene lacustrine sediments of the Qaidam Basin, NE Tibetan Plateau, Quarter. Int., 313–314, 218, 10.1016/j.quaint.2013.06.015
Herb, 2015, Late Plio–Pleistocene humidity fluctuations in the western Qaidam Basin (NE Tibetan Plateau) revealed by an integrated magnetic-palynological record from lacustrine sediments, Quat. Res., 84, 457, 10.1016/j.yqres.2015.09.009
Herb, 2015, Orbitally tuned age model for the Late Pliocene–Pleistocene lacustrine succession of drill core SG-1 from the western Qaidam Basin (NE Tibetan Plateau), Geophys. J. Int., 200, 35, 10.1093/gji/ggu372
Herzschuh, 2019, Position and orientation of the westerly jet determined Holocene rainfall patterns in China, Nat. Commun., 10, 2376, 10.1038/s41467-019-09866-8
Holbourn, 2018, Late Miocene climate cooling and intensification of Southeast Asian winter monsoon, Nat. Commun., 9, 1584, 10.1038/s41467-018-03950-1
Huybers, 2009, Pleistocene glacial variability as a chaotic response to obliquityforcing, Clim. Past, 5, 481, 10.5194/cp-5-481-2009
Huybers, 2005, Obliquity pacing of the late Pleistocene glacial terminations, Nature, 434, 491, 10.1038/nature03401
Kang, 2003, Quaternary sporopollen assemblages and paleoclimatic fluctuation in the Qaidam Basin, Geol. Bull. China, 22, 12
Koutsodendris, 2018, Prolonged monsoonal moisture availability preconditioned glaciation of the Tibetan Plateau during the Mid-Pleistocene Transition, Geophys. Res. Lett., 45, 10.1029/2018GL079303
Kutzbach, 1993, 24
Lawrence, 2006, Evolution of the eastern tropical pacific through plio-pleistocene glaciation, Science, 312, 79, 10.1126/science.1120395
Lawrence, 2009, High amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period, Paleoceanography, 24, PA2218, 10.1029/2008PA001669
Lenton, 2011, Early warning of climate tipping points, Nat. Clim. Change, 1, 201, 10.1038/nclimate1143
Liu, 1993, Stepwise coupling of monsoon circulation to global ice volume variations during the late Cenozoic, Global Planet. Change, 7, 119, 10.1016/0921-8181(93)90044-O
Liu, 2004, High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch, Nature, 427, 720, 10.1038/nature02338
Löfverström, 2016, Stationary wave reflection as a mechanism for zonalizing the Atlantic winter jet at the LGM, J. Atmos. Sci., 73, 3329, 10.1175/JAS-D-15-0295.1
Lu, 1997, Experimental study on the influence of different pretreatment procedures on the particle-size measurement of loess sediments, Chin. Sci. Bull., 42, 2535
Lu, 2010, Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in Central Asia, Geol. Soc. Lond., Spec. Publ., 342, 29, 10.1144/SP342.4
Maasch, 1990, A low-order dynamic model of global climate variability over the full Pleistocene, J. Geophys. Res., 95, 1955, 10.1029/JD095iD02p01955
McClymont, 2005, Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition, Geology, 33, 389, 10.1130/G21292.1
McKenzie, 1985, Carbon isotopes and productivity in the lacustrine and marine environment, 99
Medina-Elizalde, 2005, The Mid-Pleistocene transition in the tropical Pacific, Science, 310, 1009, 10.1126/science.1115933
Mudelsee, 1997, Exploring the structure of the mid-Pleistocene revolution with advance methods of time-series analysis, Geol. Rundsch., 86, 499, 10.1007/s005310050157
Oster, 2015, Steering of westerly storms over western north America at the last glacial Maximum, Nat. Geosci., 8, 201, 10.1038/ngeo2365
Pälike, 2006, The heartbeat of the oligocene climate system, Science, 314, 1894, 10.1126/science.1133822
Philander, 2003, Role of tropics in changing the response to Milankovich forcing some three million years ago, Paleoceanography, 18, 1045, 10.1029/2002PA000837
Raymo, 2003, The 41 kyr world: milankovitch’s other unsolved mystery, Paleoceanography, 18, 1011, 10.1029/2002PA000791
Sampe, 2010, Large-scale dynamics of the Meiyu-Baiu rainband: environmental forcing by the Westerly Jet, J. Clim., 23, 113, 10.1175/2009JCLI3128.1
Scheffer, 2009, Early warning signals for critical transitions, Nature, 461, 53, 10.1038/nature08227
Scherer, 2020, Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates, Hydrol. Earth Syst. Sci., 24, 3835, 10.5194/hess-24-3835-2020
Schmieder, 2000, The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event, Earth Planet Sci. Lett., 179, 539, 10.1016/S0012-821X(00)00143-6
Stuiver, 1970, Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators, J. Geophys. Res., 75, 5247, 10.1029/JC075i027p05247
Sun, 2010, Seven million years of wind and precipitation variability on the Chinese Loess Plateau, Earth Planet Sci. Lett., 297, 525, 10.1016/j.epsl.2010.07.004
Torrence, 1998, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61, 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
van Dam, 2006, Long-period astronomical forcing of mammal turnover, Nature, 433, 687, 10.1038/nature05163
Vandenberghe, 2013, Grain size of fine-grained windblown sediment: a powerful proxy for process identification, Earth Sci. Rev., 121, 18, 10.1016/j.earscirev.2013.03.001
Wang, 2012, 154
Wang, 2012, Pliocene-Pleistocene climate change at the N E Tibetan Plateau deduced from lithofacies variation in the drilling core SG-1, western Qaidam Basin, J. Sediment. Res., 82, 933, 10.2110/jsr.2012.76
Wang, 2017, The global monsoon across time scales: mechanisms and outstanding issues, Earth Sci. Rev., 174, 84, 10.1016/j.earscirev.2017.07.006
Wang, 2018, Northern westerlies during the last glacial Maximum: results from CMIP5 simulations, J. Clim., 31, 1135, 10.1175/JCLI-D-17-0314.1
Wissel, 1984, A universal law of the characteristic return time near thresholds, Oecologia, 65, 101, 10.1007/BF00384470
Xu, 2008, World water tower: an atmospheric perspective, Geophys. Res. Lett., 35, L20815, 10.1029/2008GL035867
Yang, 2013, Late Pliocene–Quaternary evolution of redox conditions in the western Qaidam paleolake (NE Tibetan Plateau) deduced from Mn geochemistry in the drilling core SG-1, Quat. Res., 80, 586, 10.1016/j.yqres.2013.07.007
Yang, 2017, Glacial-interglacial climate change on the northeastern Tibetan Plateau over the last 600 kyr, Palaeogeogr. Palaeoclimatol. Palaeoecol., 476, 181, 10.1016/j.palaeo.2017.04.007
Yin, 2008, The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500,000 years ago, Clim. Past, 4, 79, 10.5194/cp-4-79-2008
Zachos, 2001, Climate response to orbital forcing across the oligocene-miocene boundary, Science, 292, 274, 10.1126/science.1058288
Zan, 2010, A rock magnetic study of loess from the West Kunlun Mountains, J. Geophys. Res., 115, B10101, 10.1029/2009JB007184
Zhang, 2005, Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation, J. Clim., 18, 1853, 10.1175/JCLI3460.1
Zhang, 2012, Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications, Quat. Res., 78, 139, 10.1016/j.yqres.2012.03.011
