Climate transition in the Asia inland at 0.8–0.6 Ma related to astronomically forced ice sheet expansion

Quaternary Science Reviews - Tập 248 - Trang 106580 - 2020
Wenxia Han1,2, Erwin Appel2, Albert Galy3, Wolfgang Rösler2, Xiaomin Fang4, Xiuhua Zhu5, Jef Vandenberghe6, Jiuyi Wang7, André Berger8, Shuang Lü9, Tao Zhang4
1Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment Sciences, Linyi University, Linyi, 276000, PR China
2Department of Geosciences, University of Tübingen, Hӧlderlinstr. 12, D-72074, Tübingen, Germany
3Centre de Recherches Pétrographiques et Géochimiques, UMR7358, CNRS, Université de Lorraine, 54500, Vandoeuvre Les Nancy, France
4Key Laboratory of Continental Collision and Plateau Uplift & Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, PR China
5Center for Earth System Research and Sustainability, CliSAP, University of Hamburg, 20144, Hamburg, Germany
6Department of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
7MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China
8Georges Lemaître Center for Earth and Climate Research, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, PR China

Tài liệu tham khảo

Chen, 2019, Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales, Earth Sci. Rev., 192, 337, 10.1016/j.earscirev.2019.03.005

Curio, 2015, A 12 year high resolution climatology of atmospheric water transport over the Tibetan plateau, Earth Syst. Dynam., 6, 109124, 10.5194/esd-6-109-2015

De Garidel-Thoron, 2005, Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years, Nature, 433, 294, 10.1038/nature03189

deBoer, 2014, Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene, Nat. Commun., 5, 2999, 10.1038/ncomms3999

DeConto, 2008, Thresholds for Cenozoic bipolar glaciation, Nature, 455, 652, 10.1038/nature07337

Ding, 1995, Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years, Quat. Res., 44, 149, 10.1006/qres.1995.1059

Ding, 2002, The loess record in southern Tajikistan and correlation with Chinese loess, Earth Planet Sci. Lett., 200, 387, 10.1016/S0012-821X(02)00637-4

Ding, 2005, Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution, Earth Planet Sci. Lett., 237, 45, 10.1016/j.epsl.2005.06.036

Donges, 2011, Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, Proc. Natl. Acad. Sci. U. S. A, 108, 20423, 10.1073/pnas.1117052108

Elderfield, 2012, Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition, Science, 337, 704, 10.1126/science.1221294

Eroglu, 2016, See–saw relationship of the Holocene East Asian–Australian summer monsoon, Nat. Commun., 7, 12929, 10.1038/ncomms12929

Fang, 2002, Loess in the tian Shan and its implications for the development of the Gurbantunggut Desert and drying of northern xinjiang, Chin. Sci. Bull., 47, 1381, 10.1360/02tb9305

Ghil, 1994, Cryothermodynamics: the chaotic dynamics of paleoclimate, Phys. Nonlinear Phenom., 77, 130, 10.1016/0167-2789(94)90131-7

Guo, 2000, Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China, Geophys. Res. Lett., 27, 1751, 10.1029/1999GL008419

Guo, 2004, Late miocene–pliocene development of asian aridification as recorded in the red-earth formation in northern China, Global Planet. Change, 41, 135, 10.1016/j.gloplacha.2004.01.002

Han, 2014, Tibet forcing Quaternary stepwise enhancement of westerly jet and central Asian aridification: carbonate isotope records from deep drilling in the Qaidam salt playa, NE Tibet, Global Planet. Change, 116, 68, 10.1016/j.gloplacha.2014.02.006

Han, 2014, Wind erosion on the north-eastern Tibetan Plateau: constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin, Earth Surf. Process. Landforms, 39, 779, 10.1002/esp.3483

Herb, 2013, Environmental implications of the magnetic record in Pleistocene lacustrine sediments of the Qaidam Basin, NE Tibetan Plateau, Quarter. Int., 313–314, 218, 10.1016/j.quaint.2013.06.015

Herb, 2015, Late Plio–Pleistocene humidity fluctuations in the western Qaidam Basin (NE Tibetan Plateau) revealed by an integrated magnetic-palynological record from lacustrine sediments, Quat. Res., 84, 457, 10.1016/j.yqres.2015.09.009

Herb, 2015, Orbitally tuned age model for the Late Pliocene–Pleistocene lacustrine succession of drill core SG-1 from the western Qaidam Basin (NE Tibetan Plateau), Geophys. J. Int., 200, 35, 10.1093/gji/ggu372

Herzschuh, 2019, Position and orientation of the westerly jet determined Holocene rainfall patterns in China, Nat. Commun., 10, 2376, 10.1038/s41467-019-09866-8

Holbourn, 2018, Late Miocene climate cooling and intensification of Southeast Asian winter monsoon, Nat. Commun., 9, 1584, 10.1038/s41467-018-03950-1

Huybers, 2009, Pleistocene glacial variability as a chaotic response to obliquityforcing, Clim. Past, 5, 481, 10.5194/cp-5-481-2009

Huybers, 2005, Obliquity pacing of the late Pleistocene glacial terminations, Nature, 434, 491, 10.1038/nature03401

Kang, 2003, Quaternary sporopollen assemblages and paleoclimatic fluctuation in the Qaidam Basin, Geol. Bull. China, 22, 12

Koutsodendris, 2018, Prolonged monsoonal moisture availability preconditioned glaciation of the Tibetan Plateau during the Mid-Pleistocene Transition, Geophys. Res. Lett., 45, 10.1029/2018GL079303

Kutzbach, 1993, 24

Lawrence, 2006, Evolution of the eastern tropical pacific through plio-pleistocene glaciation, Science, 312, 79, 10.1126/science.1120395

Lawrence, 2009, High amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period, Paleoceanography, 24, PA2218, 10.1029/2008PA001669

Lenton, 2011, Early warning of climate tipping points, Nat. Clim. Change, 1, 201, 10.1038/nclimate1143

Liu, 1993, Stepwise coupling of monsoon circulation to global ice volume variations during the late Cenozoic, Global Planet. Change, 7, 119, 10.1016/0921-8181(93)90044-O

Liu, 2004, High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch, Nature, 427, 720, 10.1038/nature02338

Löfverström, 2016, Stationary wave reflection as a mechanism for zonalizing the Atlantic winter jet at the LGM, J. Atmos. Sci., 73, 3329, 10.1175/JAS-D-15-0295.1

Lu, 1997, Experimental study on the influence of different pretreatment procedures on the particle-size measurement of loess sediments, Chin. Sci. Bull., 42, 2535

Lu, 2010, Aeolian sediment evidence that global cooling has driven late Cenozoic stepwise aridification in Central Asia, Geol. Soc. Lond., Spec. Publ., 342, 29, 10.1144/SP342.4

Maasch, 1990, A low-order dynamic model of global climate variability over the full Pleistocene, J. Geophys. Res., 95, 1955, 10.1029/JD095iD02p01955

McClymont, 2005, Links between the onset of modern Walker circulation and the mid-Pleistocene climate transition, Geology, 33, 389, 10.1130/G21292.1

McKenzie, 1985, Carbon isotopes and productivity in the lacustrine and marine environment, 99

Medina-Elizalde, 2005, The Mid-Pleistocene transition in the tropical Pacific, Science, 310, 1009, 10.1126/science.1115933

Mudelsee, 1997, Exploring the structure of the mid-Pleistocene revolution with advance methods of time-series analysis, Geol. Rundsch., 86, 499, 10.1007/s005310050157

Oster, 2015, Steering of westerly storms over western north America at the last glacial Maximum, Nat. Geosci., 8, 201, 10.1038/ngeo2365

Pälike, 2006, The heartbeat of the oligocene climate system, Science, 314, 1894, 10.1126/science.1133822

Philander, 2003, Role of tropics in changing the response to Milankovich forcing some three million years ago, Paleoceanography, 18, 1045, 10.1029/2002PA000837

Raymo, 1997, The timing of major climate terminations, Paleoceanography, 12, 577, 10.1029/97PA01169

Raymo, 2003, The 41 kyr world: milankovitch’s other unsolved mystery, Paleoceanography, 18, 1011, 10.1029/2002PA000791

Sampe, 2010, Large-scale dynamics of the Meiyu-Baiu rainband: environmental forcing by the Westerly Jet, J. Clim., 23, 113, 10.1175/2009JCLI3128.1

Scheffer, 2009, Early warning signals for critical transitions, Nature, 461, 53, 10.1038/nature08227

Scherer, 2020, Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates, Hydrol. Earth Syst. Sci., 24, 3835, 10.5194/hess-24-3835-2020

Schmieder, 2000, The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: initiation, interim state and terminal event, Earth Planet Sci. Lett., 179, 539, 10.1016/S0012-821X(00)00143-6

Stuiver, 1970, Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators, J. Geophys. Res., 75, 5247, 10.1029/JC075i027p05247

Sun, 2010, Seven million years of wind and precipitation variability on the Chinese Loess Plateau, Earth Planet Sci. Lett., 297, 525, 10.1016/j.epsl.2010.07.004

Torrence, 1998, A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc., 79, 61, 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

van Dam, 2006, Long-period astronomical forcing of mammal turnover, Nature, 433, 687, 10.1038/nature05163

Vandenberghe, 2013, Grain size of fine-grained windblown sediment: a powerful proxy for process identification, Earth Sci. Rev., 121, 18, 10.1016/j.earscirev.2013.03.001

Wang, 2012, 154

Wang, 2012, Pliocene-Pleistocene climate change at the N E Tibetan Plateau deduced from lithofacies variation in the drilling core SG-1, western Qaidam Basin, J. Sediment. Res., 82, 933, 10.2110/jsr.2012.76

Wang, 2017, The global monsoon across time scales: mechanisms and outstanding issues, Earth Sci. Rev., 174, 84, 10.1016/j.earscirev.2017.07.006

Wang, 2018, Northern westerlies during the last glacial Maximum: results from CMIP5 simulations, J. Clim., 31, 1135, 10.1175/JCLI-D-17-0314.1

Wissel, 1984, A universal law of the characteristic return time near thresholds, Oecologia, 65, 101, 10.1007/BF00384470

Xu, 2008, World water tower: an atmospheric perspective, Geophys. Res. Lett., 35, L20815, 10.1029/2008GL035867

Yang, 2013, Late Pliocene–Quaternary evolution of redox conditions in the western Qaidam paleolake (NE Tibetan Plateau) deduced from Mn geochemistry in the drilling core SG-1, Quat. Res., 80, 586, 10.1016/j.yqres.2013.07.007

Yang, 2017, Glacial-interglacial climate change on the northeastern Tibetan Plateau over the last 600 kyr, Palaeogeogr. Palaeoclimatol. Palaeoecol., 476, 181, 10.1016/j.palaeo.2017.04.007

Yin, 2008, The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500,000 years ago, Clim. Past, 4, 79, 10.5194/cp-4-79-2008

Zachos, 2001, Climate response to orbital forcing across the oligocene-miocene boundary, Science, 292, 274, 10.1126/science.1058288

Zan, 2010, A rock magnetic study of loess from the West Kunlun Mountains, J. Geophys. Res., 115, B10101, 10.1029/2009JB007184

Zhang, 2005, Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation, J. Clim., 18, 1853, 10.1175/JCLI3460.1

Zhang, 2012, Magnetostratigraphy of deep drilling core SG-1 in the western Qaidam Basin (NE Tibetan Plateau) and its tectonic implications, Quat. Res., 78, 139, 10.1016/j.yqres.2012.03.011