Characterization of the structural response of a lithiated SiO2 / Si interface: A reactive molecular dynamics study
Tài liệu tham khảo
Asp, 2014, Structural power composites, Compos. Sci. Technol., 101, 41, 10.1016/j.compscitech.2014.06.020
Asp, 2015, Realisation of structural battery composite materials
Chu, 1988, Mechanical properties of solid breeder materials
Dowling, 2007
van Duin, 2001, Reaxff: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396, 10.1021/jp004368u
van Duin, 2013, A reaxff reactive force-field for proton transfer reactions in bulk water and its applications to heterogeneous catalysis, Comput. Catal. RSC Catalysis Ser., 14, 223, 10.1039/9781849734905-00223
Dunn, 2008, Rethinking multifunction in three dimensions for miniaturizing electrical energy storage, Electrochem. Soc. Interface, 17, 49, 10.1149/2.F05083IF
Fan, 2013, Mechanical properties of amorphous LixSi alloys: areactive force field study, Modell. Simul. Mater. Sci. Eng., 21, 074002, 10.1088/0965-0393/21/7/074002
Frenkel, 1996
Fu, 2014, Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of li-ion batteries, Nanoscale, 6, 7489, 10.1039/C4NR00518J
Gasco, 2014, Manufacturability of composite laminates with integrated thin film li-ion batteries, J. Compos. Mater., 48, 899, 10.1177/0021998313480195
Guo, 2008, Electrochemical reduction of nano-siO2 in hard carbon as anode material for lithium ion batteries, Electrochem. Commun., 10, 1876, 10.1016/j.elecom.2008.09.032
Hopcroft, 2010, What is the young’s modulus of silicon?, J. Microelectromech. Syst., 19, 229, 10.1109/JMEMS.2009.2039697
Huang, 2011, Atomistic mechanisms of lithium insertion in amorphous silicon, J. Power Sources, 196, 3664, 10.1016/j.jpowsour.2010.11.155
Kim, 2016, Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation, Phys. Chem. Chem. Phys., 18, 3706, 10.1039/C5CP07219K
Kim, 2014, Property evolution of Al2O3 coated and uncoated Si electrodes: a first principles investigation, J. Electrochem. Soc., 161, F3137, 10.1149/2.0301414jes
Leijonmarck, 2013, Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries, Compos. Sci. Technol., 89, 149, 10.1016/j.compscitech.2013.09.026
Luo, 2007
Ostadhossein, 2015, Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF, Phys. Chem. Chem. Phys., 17, 3832, 10.1039/C4CP05198J
Ostadhossein, 2016, Atomic insight into the lithium storage and diffusion mechanism of SiO2/Al2O3 electrodes of lithium ion batteries: ReaxFF reactive force field modeling, J. Phys. Chem. A, 120, 2114, 10.1021/acs.jpca.5b11908
Pabst, 2013, Elastic properties of silica polymorphs – a review, Ceramics-Silikaty, 57, 167
Vijayaraghavan, 2018, Fracture mechanics modelling of lithium-ion batteries under pinch torsion test, Measurement, 114, 382, 10.1016/j.measurement.2017.10.008
Vijayaraghavan, 2018, Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation, Nanomaterials, 8, 546, 10.3390/nano8070546
Vodenitcharova, 2003, Effective wall thickness of a single-walled carbon nanotube, Phys. Rev. B, 68, 165401, 10.1103/PhysRevB.68.165401
Wang, 2008, A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes, Nanotechnology, 19, 075705, 10.1088/0957-4484/19/7/075705
Wu, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310, 10.1038/nnano.2012.35