Characterization of the structural response of a lithiated SiO2 / Si interface: A reactive molecular dynamics study

Mechanics of Materials - Tập 136 - Trang 103030 - 2019
O. Verners1, A. Simone1,2
1Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
2Department of Industrial Engineering, University of Padova, Padua, Italy

Tài liệu tham khảo

Asp, 2014, Structural power composites, Compos. Sci. Technol., 101, 41, 10.1016/j.compscitech.2014.06.020

Asp, 2015, Realisation of structural battery composite materials

Chu, 1988, Mechanical properties of solid breeder materials

Dowling, 2007

van Duin, 2001, Reaxff: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396, 10.1021/jp004368u

van Duin, 2013, A reaxff reactive force-field for proton transfer reactions in bulk water and its applications to heterogeneous catalysis, Comput. Catal. RSC Catalysis Ser., 14, 223, 10.1039/9781849734905-00223

Dunn, 2008, Rethinking multifunction in three dimensions for miniaturizing electrical energy storage, Electrochem. Soc. Interface, 17, 49, 10.1149/2.F05083IF

Fan, 2013, Mechanical properties of amorphous LixSi alloys: areactive force field study, Modell. Simul. Mater. Sci. Eng., 21, 074002, 10.1088/0965-0393/21/7/074002

Frenkel, 1996

Fu, 2014, Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of li-ion batteries, Nanoscale, 6, 7489, 10.1039/C4NR00518J

Gasco, 2014, Manufacturability of composite laminates with integrated thin film li-ion batteries, J. Compos. Mater., 48, 899, 10.1177/0021998313480195

Guo, 2008, Electrochemical reduction of nano-siO2 in hard carbon as anode material for lithium ion batteries, Electrochem. Commun., 10, 1876, 10.1016/j.elecom.2008.09.032

Hopcroft, 2010, What is the young’s modulus of silicon?, J. Microelectromech. Syst., 19, 229, 10.1109/JMEMS.2009.2039697

Huang, 2011, Atomistic mechanisms of lithium insertion in amorphous silicon, J. Power Sources, 196, 3664, 10.1016/j.jpowsour.2010.11.155

Kim, 2016, Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation, Phys. Chem. Chem. Phys., 18, 3706, 10.1039/C5CP07219K

Kim, 2014, Property evolution of Al2O3 coated and uncoated Si electrodes: a first principles investigation, J. Electrochem. Soc., 161, F3137, 10.1149/2.0301414jes

LAMMPS documentation, 2017. http://lammps.sandia.gov/doc/Manual.html. Accessed 2017-04-26.

Leijonmarck, 2013, Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries, Compos. Sci. Technol., 89, 149, 10.1016/j.compscitech.2013.09.026

Luo, 2007

Ostadhossein, 2015, Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF, Phys. Chem. Chem. Phys., 17, 3832, 10.1039/C4CP05198J

Ostadhossein, 2016, Atomic insight into the lithium storage and diffusion mechanism of SiO2/Al2O3 electrodes of lithium ion batteries: ReaxFF reactive force field modeling, J. Phys. Chem. A, 120, 2114, 10.1021/acs.jpca.5b11908

Pabst, 2013, Elastic properties of silica polymorphs – a review, Ceramics-Silikaty, 57, 167

Pubchem, 2018. https://pubchem.ncbi.nlm.nih.gov. Accessed 2018-08-25.

Periodic Table, 2018. http://www.rsc.org/Periodic-table/. Accessed 2018-08-25.

Vijayaraghavan, 2018, Fracture mechanics modelling of lithium-ion batteries under pinch torsion test, Measurement, 114, 382, 10.1016/j.measurement.2017.10.008

Vijayaraghavan, 2018, Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation, Nanomaterials, 8, 546, 10.3390/nano8070546

Vodenitcharova, 2003, Effective wall thickness of a single-walled carbon nanotube, Phys. Rev. B, 68, 165401, 10.1103/PhysRevB.68.165401

Wang, 2008, A critical assessment of the elastic properties and effective wall thickness of single-walled carbon nanotubes, Nanotechnology, 19, 075705, 10.1088/0957-4484/19/7/075705

Wu, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310, 10.1038/nnano.2012.35

Yan, 2013, Hollow porous siO2 nanocubes towards high-performance anodes for lithium-ion batteries, Sci. Rep., 3, 1568, 10.1038/srep01568