A review of multifunctional structure technology for aerospace applications

Acta Astronautica - Tập 120 - Trang 30-42 - 2016
K.K. Sairajan1, G.S. Aglietti2, K.M. Mani1
1Structures Group, ISRO Satellite Centre, Bangalore 560017, India
2Surrey Space Centre, University of Surrey, Guildford GU2 7XH, United Kingdom

Tài liệu tham khảo

Aglietti, 2007, Multifunctional structure technologies for satellite applications, Shock Vib. Digest, 39, 381, 10.1177/0583102407077397 W.K. Belvin, J.J. Watson. Structural concepts and materials for lunar exploration habitats, in: Proceedings of AIAA Space 2006, San Jose, California, 200+6, pp. 1–15 NASA SBIR, Phase I Solicitation (Multifunctional Materials and Structures), NASA, 〈http://sbir.gsfc.nasa.gov/printpdf/54871〉, 2015 (accessed 25.07.15) Gonzalo, 2014, On the challenge of a century lifespan satellite, Prog. Aerosp. Sci., 10.1016/j.paerosci.2014.05.001 Keller, 2010, Thermomechanical behavior of multifunctional GFRP sandwich structures with encapsulated photovoltaic cells, J. Compos. Constr., 14, 470, 10.1061/(ASCE)CC.1943-5614.0000101 Optimization Based Design of Multifunctional Structural Battery for Electric Vehicles, Structures and Composites Laboratory, Stanford University 〈http://structure.stanford.edu/documents%5Cprojects%5Cdong.pdf,〉 (accessed 14.08.15). L.E. Asp, E.S. Greenhalgh, Multifunctional Composite Materials for Energy Storage in Structural Load Paths, 〈http://arpa-e.energy.gov/sites/default/files/documents/files/CSESS%20Asp.pdf〉 (accessed, 12.08.15). Gibson, 2010, A review of recent research on mechanics of multifunctional composite materials and structures, Compos. Struct., 92, 2793, 10.1016/j.compstruct.2010.05.003 Noor, 2000, Structures technology for future aerospace systems, Comput. Struct., 74, 507, 10.1016/S0045-7949(99)00067-X Salonitis, 2010, Multifunctional materials: engineering applications and processing challenges, Int. J. Adv. Manuf. Technol., 49, 803, 10.1007/s00170-009-2428-6 B. Lanning, D. Martin. Survey of current and next generation space power technologies, in: Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit, American Institute of Aeronautics and Astronautics San Diego, 2006, pp. 1–16 C. Clark, J. Summers, J. Armstrong, Aiaa, Innovative flexible lightweight thin-film power generation and storage for space applications, in: Proceedings of the 35th Intersociety Energy Conversion Engineering Conference and Exhibit, vols. 1 and 2, Technical Papers, 2000, pp. 692–698. Pereira, 2008, Embedding thin-film lithium energy cells in structural composites, Compos. Sci. Technol., 68, 1935, 10.1016/j.compscitech.2008.02.019 Pereira, 2009, Energy storage structural composites: a review, J. Compos. Mater., 43, 549, 10.1177/0021998308097682 B.J. Neudecker, M.H. Benson, B.K. Emerson, Power fibres: thin-film batteries on fibre substrates, in: 14th International Conference on Composite Materials, San Diego, 2003 Metzger, 1998, Nickel foam substrate for nickel metal hydride electrodes and lightweight honeycomb structures, Int. J. Hydrog. Energy, 23, 1025, 10.1016/S0360-3199(98)00019-6 Lyman, 1998, PowerCore: combining structure and batteries for increased energy to weight ratio, IEEE Aerosp. Electron. Syst. Mag., 13, 39, 10.1109/62.715539 Leijonmarck, 2013, Solid polymer electrolyte-coated carbon fibres for structural and novel micro-batteries, Compos. Sci. Technol., 89, 149, 10.1016/j.compscitech.2013.09.026 Asp, 2014, Structural power composites, Compos. Sci. Technol., 101, 41, 10.1016/j.compscitech.2014.06.020 Schwingshackl, 2006, Parameter optimization of the dynamic behavior of inhomogeneous multifunctional power structures, AIAA J., 44, 2286, 10.2514/1.18599 Lackner, 2002, High performance plastic lithium-ion battery cells for hybrid vehicles, J. Power Sources, 104, 1, 10.1016/S0378-7753(01)00816-3 Schwingshackl, 2006 Schwingshackl, 2007, Experimental determination of the dynamic behavior of a multifunctional power structure, AIAA J., 45, 491, 10.2514/1.23894 J.F. Snyder, R.H. Carter, E.L. Wong, P.A. Nguyen, K. Xu, E.H. Ngo, E.D. Wetzel, Multifunctional structural composite batteries, in: Proceedings of Society for the Adavancement of Material and Process Engineering 2006 Fall Technical Conference, Texas, 2007. Tarascon, 1996, Performance of Bellcore׳s plastic rechargeable Li-ion batteries, Solid State Ionics, 86–88, 49, 10.1016/0167-2738(96)00330-X Xianming, 2006, A feasibility study of commercial laminated lithium-ion polymer cells for space applications, J. Electrochem. Soc., 153, A89, 10.1149/1.2131825 Ilic, 2006, Fuel cells and batteries: competition or separate paths?, J. Power Sources, 155, 72, 10.1016/j.jpowsour.2005.05.100 Roberts, 2010, Structural performance of a multifunctional spacecraft structure based on plastic lithium-ion batteries, Acta Astronaut., 67, 424, 10.1016/j.actaastro.2010.03.004 Roberts, 2009 Roberts, 2008, Satellite multi-functional power structure: feasibility and mass savings, Proc. Inst. Mech. Eng. Part G – J. Aerosp. Eng., 222, 41, 10.1243/09544100JAERO255 Foster, 2010, The thermal environment encountered in space by a multifunctional solar array, Aerosp. Sci. Technol., 213, 10.1016/j.ast.2009.12.008 Thomas, 2004, Mechanical design and performance of composite multifunctional materials, Acta Mater., 52, 2155, 10.1016/j.actamat.2004.01.007 Ping, 2009, Design and fabrication of multifunctional structural batteries, J. Power Sources, 646 Wang, 2014, Mechanical and electrical behavior of a novel satellite multifunctional structural battery, J. Sci. Ind. Res., 73, 163 S.J.I. Walker, A. Cook, J.A. Foster, G.S. Aglietti, Final development and testing of a multifunctional power structure for the ROV-E project, in: International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics, Leuven, Belgium, 2014, pp. 895–909 VARTA Preliminary Data Sheet, 〈http://www.vartamicrobattery.com/applications/mb_data/documents/data_sheets/DS56478.pdf〉 (accessed 08.06.15). Jang, 2011, Development of multi-functional composite structures with embedded electronics for space application, Acta Astronaut., 68, 240, 10.1016/j.actaastro.2010.08.009 C.L. Moore, Gossamer spacecraft technology for space solar power systems, in: IEEE Aerospace Conference, Big Sky, MT, 2001, pp. 3585–3589 D.V. Schatzel, Flip chip reliability on dynamically loaded multi-functional spacecraft structures, 2008 IEEE Aerospace Conference, vols 1–9, 2008, pp. 2395–2400 Rawal, 1999, Thermal management for multifunctional structures, IEEE Trans. Adv. Packag., 22, 379, 10.1109/6040.784489 Barnett, 2000 Hyonny, 2006, Fatigue fracture of embedded copper conductors in multifunctional composite structures, Compos. Sci. Technol., 66, 1010, 10.1016/j.compscitech.2005.08.007 Marcos, 2007 MULFUN: Multifunctional Structures, ESA, 〈http://cordis.europa.eu/publication/rcn/13129_en.html〉 (accessed 30.09.15). A.B. Chmielewski, A. Das, C. Cassapakis, D. Allen, W.J. Schafer, J. Sercel, F. Deligiannis, M. Piszczor, P.A. Jones, D.M. Barnett, S. Rawal, T. Reddy, The new millennium program power technology, in: Proceedings of the 31st Intersociety Energy Conversion Engineering Conference Washington, DC, 1996 A. Das, M.W. Obal, Ieee, Revolutionary satellite structural systems technology: a vision for the future, in: Proceedings of IEEE Aerospace Conference Proceedings, Snowmass, CO, 1998, pp. 57–67 Son, 2008, Development of a smart-skin phased array system with a honeycomb sandwich microstrip antenna, Smart Mater. Struct., 17, 1, 10.1088/0964-1726/17/3/035012 S.E. Hahn, R. Usami, T. Ozaki, Multifunctional structure spacecraft bus technology, in: Proceedings of the 22nd AIAA International Communications Satellite Systems Conference & Exhibit AIAA, Monterey, California, 2004, pp. 1–14 Lin, 2009, Characterization of multifunctional structural capacitors for embedded energy storage, J. Appl. Phys., 106, 10.1063/1.3267482 R. John, G. Atxaga, H.J. Frerker, A. Newerla, Eda, Advancement of multifunctional support structure technologies (AMFSST), In: Proceedings of the 13th International Workshop on Thermal Investigation of Ics and Systems, 2007, pp. 98–103. Seepersad, 2004, Multifunctional design of prismatic cellular materials, J. Comput.-Aided Mater. Des., 11, 163, 10.1007/s10820-005-3167-0 Veedu, 2006, Multifunctional composites using reinforced laminae with carbon-nanotube forests, Nat. Mater., 5, 457, 10.1038/nmat1650 Baturkin, 2005, Micro-satellites thermal control-concepts and components, Acta Astronaut., 56, 161, 10.1016/j.actaastro.2004.09.003 M. Gottero, E. Zeminiani, G. Poidomani, E. Sacchi, Development of multifunctional structures at Thales Alenia Space Italia, in: Proceedings of the 37th International Conference on Environmental System, Chicago, 2007. Queheillalt, 2008, Heat pipe sandwich panel structure, Int. J. Heat Mass Transf., 51, 312, 10.1016/j.ijheatmasstransfer.2007.03.051 Sypeck, 2001, Multifunctional microtruss laminates: textile synthesis and properties, J. Mater. Res., 16, 890, 10.1557/JMR.2001.0117 J.A. Foster, G.S. Aglietti, S.J.I. Walker, ROV-E Activities at the University of Southampton, in: Proceedings of the 64th International Astronautical Congress, International Astronautical Federation, Beijing, China, 2013, pp. 1–7. Molefia, 2010, Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer–Tropsch paraffin wax, Thermochim. Acta, 500, 88, 10.1016/j.tca.2010.01.002 Bayes-Garcıa, 2010, Phase change materials (PCM) microcapsules with different shell compositions: preparation, Charact. Therm. Stab. Sol. Energy Mater. Sol. Cells, 94, 1235, 10.1016/j.solmat.2010.03.014 Wirtz, 2009, Thermal and mechanical characteristics of a multifunctional thermal energy storage structure, IEEE Trans. Compon. Packag. Technol., 32, 53, 10.1109/TCAPT.2008.2002880 Chopra, 2002, Review of state of art of smart structures and integrated systems, AIAA J., 40, 2145, 10.2514/2.1561 Christodoulou, 2003, Multifunctional material systems: the first generation, J. Miner. Met. Mater. Soc., 55, 39, 10.1007/s11837-003-0008-z Torquato, 2002, Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.266601 Torquato, 2003, Optimal design of manufacturable three-dimensional composites with multifunctional characteristics, J. Appl. Phys., 94, 5748, 10.1063/1.1611631 Elzey, 2005, A shape memory-based multifunctional structural actuator panel, Int. J. Solids Struct., 42, 1943, 10.1016/j.ijsolstr.2004.05.034 You, 2005, Design of load-bearing antenna structures by embedding technology of microstrip antenna in composite sandwich structure, Compos. Struct., 71, 378, 10.1016/j.compstruct.2005.09.021 Kim, 2011, Design of a multilayer composite-antenna-structure by spiral type, PIERS Online, 7, 363 J.K.H. Lin, C.F. Knoll, C.E. Willey, Shape memory inflatable structures for large space systems applications, in: Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, 2006. Gao, 2004, Modelling of a high performance piezoelectric actuator assembly for active and passive vibration control, Smart Mater. Struct., 13, 384, 10.1088/0964-1726/13/2/017 Sodano, 2005, Multiple sensors and actuators for vibration suppression of an inflated torus, J. Spacecr. Rockets, 42, 370, 10.2514/1.8022 Lin, 2009, Fabrication and electromechanical characterization of a piezoelectric structural fiber for multifunctional composites, Adv. Funct. Mater., 19, 592, 10.1002/adfm.200800859 Yirong, 2008, Concept and model of a piezoelectric structural fiber for multifunctional composites, Compos. Sci. Technol., 68 Anton, 2010, Multifunctional self-charging structures using piezoceramics and thin-film batteries, Smart Mater. Struct., 19, 10.1088/0964-1726/19/11/115021 F. Pinto, Smart multifunctional composite materials for improvement of structural and non-structural properties, PhD Thesis,Mechanical Engineering, University of Bath, Bath, 2013 Capezzuto, 2010, A smart multifunctional polymer nanocomposites layer for the estimation of low-velocity impact damage in composite structures, Compos. Struct., 92, 1913, 10.1016/j.compstruct.2010.01.003 Makihara, 2012, Innovative digital self-powered autonomous system for multimodal vibration suppression, AIAA J., 50, 2004, 10.2514/1.J051560 Barnett, 1999, Multifunctional structures technology experiment on deep space 1 mission, IEEE Aerosp. Electron. Syst. Mag., 14, 13, 10.1109/62.738349 E. Fosness, J. Guerrero, K. Qassim, S.J. Denoyer, Recent advances in multi-functional structures, in: Proceedings of IEEE Aerospace Conference, Big Sky, MT, 2000 J. Marcos, M. Segura, J.C. Antolin, A. Landaberea, F. Lamela, G. Atxaga, Multifunctional equipment design by using high thermal conductivity fibres, in: Proceedings of European Conference on Spacecraft Structures, Materials and Mechanical Testing, Noordwijk, The Netherlands, 2005 Kim, 2009, Inkjet printed electronics for multifunctional composite structure, Compos. Sci. Technol., 69, 1256, 10.1016/j.compscitech.2009.02.034 Materials, Structures, Mechanical Systems, and Manufacturing Road Map, NASA, 〈http://www.nasa.gov/sites/default/files/501625main_TA12-ID_rev6_NRC-wTASR.pdf〉,(accessed 25.07.15). Allik, 1970, Finite element method for piezoelectric vibration, Int. J. Numer. Methods Eng., 2, 10.1002/nme.1620020202 Becker, 2006, Finite element-based analysis of shunted piezoelectric structures for vibration damping, Comput. Struct., 84, 2340, 10.1016/j.compstruc.2006.08.067 Caruso, 2001, A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping, Smart Mater. Struct., 10, 1059, 10.1088/0964-1726/10/5/322 J.B. Min, K.P. Duffy, A.J. Provenza, Shunted piezoelectric vibration damping analysis including centrifugal loading effects, in: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, Florida, 2010 J.S. Wang, D.F. Ostergaard, A finite element-electric circuit coupled simulation method for piezoelectric transducer, in: S.C. Schneider, M. Levy, B.R. McAvoy (Eds.), Proceedings of IEEE Ultrasonics Symposium, Lake Tahoe, Nevada, 1999, pp. 1105–1108. Seba, 2006, Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis, Smart Mater. Struct., 15, 509, 10.1088/0964-1726/15/2/034 Wang, 2011, Mixed piezothermoelastic finite element model for THUNDER actuators, AIAA J., 49, 2100, 10.2514/1.J050284 Reaves, 2003 Park, 2006, Design and experimental validation of piezoelectric shunt structures using admittance analysis, Smart Mater. Struct., 15, 10.1088/0964-1726/15/1/038 Jeon, 2004, Buckling characteristics of smart skin structures, Compos. Struct., 63, 427, 10.1016/S0263-8223(03)00191-0 Santapuri, 2014, Nondimensional characterization and asymptotic model development for multifunctional structures with application to load-bearing antennas, Smart Mater. Struct., 23, 1, 10.1088/0964-1726/23/5/055013 Bowland, 2014, Multifunctional barium titanate coated carbon fibers, Adv. Funct. Mater., 24, 6303, 10.1002/adfm.201401417 Sun, 2002, Effective mechanical properties of EM composite conductors: an analytical and finite element modeling approach, Compos. Struct., 58, 411, 10.1016/S0263-8223(02)00129-0 Sairajan, 2014, Correlation of finite element models of multi-physics systems, J. Sound Vib., 333, 4051 MSC Nastran Users Manual, MSC Software Corporation, California, 2001. ANSYS Multiphysics, ANSYS Inc., Canonsburg, Pennsylvania, 2011. Sairajan, 2013 Wang, 2015, Thermal analysis of multifunctional structural battery for satellite applications, Appl. Therm. Eng., 78, 209, 10.1016/j.applthermaleng.2014.12.054 J. Stocker, P. Parigger, M. Thiel, Structural development of Equator-S, in: Proceedings of Conference on Spacecraft Structures, Materials & Mechanical Testing, Noordwijk, The Netherlands, 1996, pp. 21–27 Sairajan, 2011, Design of low mass dimensionally stable composite base structure for a spacecraft, Compos. Part B-Eng., 42, 280, 10.1016/j.compositesb.2010.11.003 J.M. Grasmeyer, M.T. Keennon, Development of the Black Widow micro air vehicle, 39th Aerospace Sciences Meeting and Exhibit, AIAA-2001-0127, 195, 2002, 519–535 Ashby, 2000, Multi-objective optimization in material design and selection, Acta Mater., 48, 359, 10.1016/S1359-6454(99)00304-3 Mario de Araujo, 2005, Geraldes, developing fibrous multifunctional structures for technical applications, AUTEX Res. J., 5, 49 Datashvili, 2010, Multifunctional and dimensionally stable flexible fibre composites for space applications, Acta Astronaut., 66, 1081, 10.1016/j.actaastro.2009.09.026