Catalytic behavior of La<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1129" altimg="si3.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1137" altimg="si4.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:math>-promoted SO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1145" altimg="si5.svg"><mml:msubsup><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:mrow></mml:msubsup></mml:math> /ZrO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1159" altimg="si3.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> in the simultaneous esterification and transesterification of palm oil

Energy Reports - Tập 7 - Trang 5374-5385 - 2021
Dussadee Rattanaphra1, Asama Temrak2, Sasikarn Nuchdang1, Wilasinee Kingkam1, Vichai Puripunyavanich1, Anusith Thanapimmetha2,3, Maythee Saisriyoot2,3, Penjit Srinophakun2,3
1Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakorn Nayok, Thailand
2Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
3Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, Thailand

Tài liệu tham khảo

Chen, 2011, The effect of rare earth modification on the structure and catalytic performance of SO42−/ZrO 2 solid acid catalysts, Adv. Mater. Res., 289–290, 1375

Chuah, 2015, Performance and emission of diesel engine fuelled by waste cooking oil methyl ester derived from palm olein using hydrodynamic cavitation, Clean Technol. Environ. Policy, 17, 2229, 10.1007/s10098-015-0957-2

Chuah, 2017, Influence of fatty acids in waste cooking oil for cleaner biodiesel, Clean Techn. Environ. Policy, 19, 859, 10.1007/s10098-016-1274-0

Garcia, 2008, Transesterification of soybean oil catalyzed by sulfated zirconia, Bioresour. Technol., 99, 6608, 10.1016/j.biortech.2007.09.092

Jiang, 2010, The co-promotion effect of mo and nd on the activity and stability of sulfated zirconia-based solid acids in esterification, Appl. Catal. A Gen., 389, 46, 10.1016/j.apcata.2010.08.062

Lee, 2015, Preparation and application of binary acid–base CaO-La2O3 catalyst for biodiesel production, Renew. Energy, 74, 124, 10.1016/j.renene.2014.07.017

Manoilova, 2004, Surface acidity and basicity of La2O3, LaOCl, and LaCl 3 characterized by IR spectroscopy, TPD, and DFT calculations, J. Phys. Chem. B, 108, 15770, 10.1021/jp040311m

Omar, 2011, Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst, Fuel Process. Technol., 92, 2397, 10.1016/j.fuproc.2011.08.009

Russbueldt, 2010, New rare earth oxide catalysts for the transesterification of triglycerides with methanol resulting in biodiesel and pure glycerol, J. Catal., 271, 290, 10.1016/j.jcat.2010.02.005

Salinas, 2019, Lanthanum oxide behavior in La2O3-Al2O3 and La2O3-ZrO 2 catalysts with application in FAME production, Fuel, 253, 400, 10.1016/j.fuel.2019.05.015

Sani, 2016, Acidity and catalytic performance of Yb-doped SO42−/Zr in comparison with SO42−/Zr catalysts synthesized via different preparatory conditions for biodiesel production, J. Taiwan Inst. Chem. Eng., 59, 195, 10.1016/j.jtice.2015.07.016

Saravanan, 2012, Sulfated zirconia: an efficient solid acid catalyst for esterification of myristic acid with short chain alcohols, Catal. Sci. Technol., 2, 2512, 10.1039/c2cy20462b

Silva-Rodrigo, 2015, Studies of sulphated mixed oxides (ZrO 2-SO4-La2o3) in the isomerization of n-hexane, Catal. Today, 250, 197, 10.1016/j.cattod.2014.10.013

Tang, 2018, Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review, Renew. Sustain. Energy Rev., 92, 235, 10.1016/j.rser.2018.04.056

Taufiq-Yap, 2011, Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel, Biomass Bioenergy, 35, 827, 10.1016/j.biombioe.2010.11.011

Valange, 2007, Lanthanum oxides for the selective synthesis of phytosterol esters: Correlation between catalytic and acid–base properties, J. Catal., 251, 113, 10.1016/j.jcat.2007.07.004

Wang, 2020, So42−/ZrO 2 as a solid acid for esterification of palmitic acid with methanol: Effects of the calcination time and recycle method, ACS Omega, 5, 30139, 10.1021/acsomega.0c04586

Wong, 2015, Biodiesel production via transesterification of palm oil by using CaO-CeO 2 mixed oxide catalysts, Fuel, 162, 288, 10.1016/j.fuel.2015.09.012

Yu, 2011, RE2O3-promoted Pt-SO42−/ZrO 2-Al2O3 catalyst in n-hexane hydroisomerization, Catal. Today, 166, 84, 10.1016/j.cattod.2010.06.005

Yu, 2011, Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO-CeO 2 mixed oxides, Fuel, 90, 1868, 10.1016/j.fuel.2010.11.009

Zhao, 2015, Sulphated mesoporous La2O3–ZrO 2 composite oxide as an efficient and reusable solid acid catalyst for alkenylation of aromatics with phenylacetylene, Appl. Catal. A Gen., 503, 77, 10.1016/j.apcata.2015.01.023

Zhou, 2015, Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil, J. Ind. Eng. Chem., 31, 385, 10.1016/j.jiec.2015.07.013