Broadly neutralizing aptamers to SARS-CoV-2: A diverse panel of modified DNA antiviral agents

Molecular Therapy - Nucleic Acids - Tập 31 - Trang 370-382 - 2023
Amy D. Gelinas1, Tiong Kit Tan2, Sai Liu3, Javier G. Jaramillo3, James Chadwick3, Adam C. Harding3, Chi Zhang1, Brian E. Ream1, Chelsea N. Chase1, Matthew R. Otis1, Thomas Lee4, Daniel J. Schneider1, William S. James3, Nebojsa Janjic1
1SomaLogic, Inc., 2945 Wilderness Place, Boulder, CO 80301, USA
2MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
3James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
4Department of Biochemistry, University of Colorado, Boulder, JSCBB, C1B90, 3415 Colorado Avenue, Boulder, CO 80303, USA

Tài liệu tham khảo

Li, 2016, Structure, function, and evolution of coronavirus spike proteins, Annu. Rev. Virol., 3, 237, 10.1146/annurev-virology-110615-042301

Li, 2003, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, 426, 450, 10.1038/nature02145

Belouzard, 2009, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proc. Natl. Acad. Sci. USA, 106, 5871, 10.1073/pnas.0809524106

Bosch, 2003, The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex, J. Virol., 77, 8801, 10.1128/JVI.77.16.8801-8811.2003

Walls, 2020, Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell, 181, 281, 10.1016/j.cell.2020.02.058

Wrapp, 2020, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, bioRxiv

Burkard, 2014, Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner, PLoS Pathog., 10, e1004502, 10.1371/journal.ppat.1004502

Walls, 2017, Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion, Proc. Natl. Acad. Sci. USA, 114, 11157, 10.1073/pnas.1708727114

Jackson, 2022, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol., 23, 3, 10.1038/s41580-021-00418-x

Lan, 2020, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 581, 215, 10.1038/s41586-020-2180-5

Organization, 2021

Tao, 2021, The biological and clinical significance of emerging SARS-CoV-2 variants, Nat. Rev. Genet., 22, 757, 10.1038/s41576-021-00408-x

Gold, 2010, Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS One, 5, e15004, 10.1371/journal.pone.0015004

Vaught, 2010, Expanding the chemistry of DNA for in vitro selection, J. Am. Chem. Soc., 132, 4141, 10.1021/ja908035g

Gawande, 2017, Selection of DNA aptamers with two modified bases, Proc. Natl. Acad. Sci. USA, 114, 2898, 10.1073/pnas.1615475114

Khati, 2003, Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2'F-RNA aptamers, J. Virol., 77, 12692, 10.1128/JVI.77.23.12692-12698.2003

Dey, 2005, Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1, RNA, 11, 873, 10.1261/rna.7205405

Dey, 2005, An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120-CCR5 interaction, J. Virol., 79, 13806, 10.1128/JVI.79.21.13806-13810.2005

Cohen, 2008, An aptamer that neutralizes R5 strains of HIV-1 binds to core residues of gp120 in the CCR5 binding site, Virology, 381, 46, 10.1016/j.virol.2008.08.025

Hsieh, 2020, Structure-based design of prefusion-stabilized SARS-CoV-2 spikes, Science, 369, 1501, 10.1126/science.abd0826

Cao, 2021, Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies, Nature, 602, 657, 10.1038/s41586-021-04385-3

Barnes, 2020, SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies, Nature, 588, 682, 10.1038/s41586-020-2852-1

Gupta, 2014, Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor, J. Biol. Chem., 289, 8706, 10.1074/jbc.M113.532580

Drolet, 2016, Fit for the eye: aptamers in ocular disorders, Nucleic Acid Therapeut., 26, 127, 10.1089/nat.2015.0573

Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121

Nomura, 1997, Site-specific introduction of functional groups into phosphodiester oligodeoxynucleotides and their thermal stability and nuclease-resistance properties, Nucleic Acids Res., 25, 2784, 10.1093/nar/25.14.2784

Rohloff, 2015, Practical synthesis of cytidine-5-carboxamide-modified nucleotide reagents, Nucleos Nucleot. Nucleic Acids, 34, 180, 10.1080/15257770.2014.978011

Huang, 2021, Breadth and function of antibody response to acute SARS-CoV-2 infection in humans, PLoS Pathog., 17, e1009352, 10.1371/journal.ppat.1009352

Rijal, 2019, Therapeutic monoclonal antibodies for ebola virus infection derived from vaccinated humans, Cell Rep., 27, 172, 10.1016/j.celrep.2019.03.020

Tan, 2021, A COVID-19 vaccine candidate using SpyCatcher multimerization of the SARS-CoV-2 spike protein receptor-binding domain induces potent neutralising antibody responses, Nat. Commun., 12, 542, 10.1038/s41467-020-20654-7

Raval, 2021, Improving spectral validation rates in hydrogen-deuterium exchange data analysis, Anal. Chem., 93, 4246, 10.1021/acs.analchem.0c05045

Rey, 2014, Mass spec studio for integrative structural biology, Structure, 22, 1538, 10.1016/j.str.2014.08.013