Bayesian statistical learning for big data biology

Biophysical Reviews - Tập 11 - Trang 95-102 - 2019
Christopher Yau1,2, Kieran Campbell3,4
1Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
2The Alan Turing Institute, London, UK
3Department of Statistics, University of British Columbia, Vancouver, Canada
4Department of Molecular Oncology, BC Cancer Agency, Vancouver, Canada

Tóm tắt

Bayesian statistical learning provides a coherent probabilistic framework for modelling uncertainty in systems. This review describes the theoretical foundations underlying Bayesian statistics and outlines the computational frameworks for implementing Bayesian inference in practice. We then describe the use of Bayesian learning in single-cell biology for the analysis of high-dimensional, large data sets.

Tài liệu tham khảo

Ahmed S, Rattray M, Boukouvalas A (2019) Grandprix: scaling up the bayesian gplvm for single-cell data. Bioinformatics (Oxford England) 35:47–54. https://doi.org/10.1093/bioinformatics/bty533

Bernardo JM, Smith AF (2009) Bayesian theory, vol 405. Wiley, New York

Campbell KR, Yau C (2017) Probabilistic modeling of bifurcations in single-cell gene expression data using a bayesian mixture of factor analyzers. Wellcome Open Res 2:19. https://doi.org/10.12688/wellcomeopenres.11087.1

Ding J, Condon A, Shah SP (2018) Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun 9(1):2002. https://doi.org/10.1038/s41467-018-04368-5, http://www.ncbi.nlm.nih.gov/pubmed/29784946

Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987) Hybrid monte carlo. Phys Lett B 195(2):216–222

Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer Series in Statistics, New York

Gelman A, Stern HS, Carlin JB, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis. Chapman and Hall/CRC, Boca Raton

Kingma DP, Welling M (2013) Auto-encoding variational bayes. arXiv:1312.6114

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

Lindley DV (1972) Bayesian statistics, a review, vol 2. SIAM

Lopez R, Regier J, Cole MB, Jordan MI, Yosef N (2018) Deep generative modeling for single-cell transcriptomics. Nat Methods 15 (12):1053–1058. https://doi.org/10.1038/s41592-018-0229-2, http://www.ncbi.nlm.nih.gov/pubmed/30504886

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017) Automatic differentiation in pytorch

Penfold CA, Sybirna A, Reid JE, Huang Y, Wernisch L, Ghahramani Z, Grant M, Surani MA (2018) Branch-recombinant gaussian processes for analysis of perturbations in biological time series. Bioinformatics 34(17):i1005–i1013. https://doi.org/10.1093/bioinformatics/bty603

Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M et al (2017) Science forum: the human cell atlas. Elife 6:e27,041

Shahbaba B, Lan S, Johnson WO, Neal RM (2014) Split Hamiltonian Monte Carlo. Stat Comput 24(3):339–349

Vallejos CA, Marioni J C, Richardson S (2015) Basics: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol 11:e1004,333. https://doi.org/10.1371/journal.pcbi.1004333

Yao Y, Vehtari A, Simpson D, Gelman A (2018) Yes, but did it work?: evaluating variational inference. arXiv:1802.02538