OncoNEM: inferring tumor evolution from single-cell sequencing data
Tóm tắt
Single-cell sequencing promises a high-resolution view of genetic heterogeneity and clonal evolution in cancer. However, methods to infer tumor evolution from single-cell sequencing data lag behind methods developed for bulk-sequencing data. Here, we present OncoNEM, a probabilistic method for inferring intra-tumor evolutionary lineage trees from somatic single nucleotide variants of single cells. OncoNEM identifies homogeneous cellular subpopulations and infers their genotypes as well as a tree describing their evolutionary relationships. In simulation studies, we assess OncoNEM’s robustness and benchmark its performance against competing methods. Finally, we show its applicability in case studies of muscle-invasive bladder cancer and essential thrombocythemia.
Tài liệu tham khảo
Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194(4260):23–8.
Chowdhury SA, Shackney SE, Heselmeyer-Haddad K, Ried T, Schäffer AA, Schwartz R. Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics. 2013; 29(13):189–98. [doi:10.1093/bioinformatics/btt205].
Sidow A, Spies N. Concepts in solid tumor evolution. Trends Genet. 2015; 31(4):208–14. [doi:10.1016/j.tig.2015.02.001].
Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al.The life history of 21 breast cancers. Cell. 2012; 149(5):994–1007. [doi:10.1016/j.cell.2012.04.023].
Oesper L, Mahmoody A, Raphael BJ. THetA: inferring intra-tumor heterogeneity from high- throughput DNA sequencing data. Genome Biol. 2013; 14. [doi:10.1186/gb-2013-14-7-r80].
Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al.PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014; 11(4):396–8. [doi:10.1038/nmeth.2883].
Jiao W, Vembu S, Deshwar AG, Stein L, Morris Q. Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 2014; 15:35. [doi:10.1186/1471-2105-15-35].
Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al.Tumour evolution inferred by single-cell sequencing. Nature. 2011; 472(7341):90–4. [doi:10.1038/nature09807].
Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al.Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012; 148(5):886–95. [doi:10.1016/j.cell.2012.02.025].
Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al.Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 2012; 148(5):873–85. [doi:10.1016/j.cell.2012.02.028].
Li Y, Xu X, Song L, Hou Y, Li Z, Tsang S, et al.Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. GigaScience. 2012; 1(1):12. [doi:10.1186/2047-217X-1-12].
Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al.Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014; 32(5):479–84. [doi:10.1038/nbt.2892].
Navin NE. Cancer genomics: one cell at a time. Genome Biol. 2014; 15(8):452. [doi:10.1186/s13059-014-0452-9].
Yu C, Yu J, Yao X, Wu WK, Lu Y, Tang S, et al.Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing. Cell Res. 2014; 24(6):701–12. [doi:10.1038/cr.2014.43].
Hughes AE, Magrini V, Demeter R, Miller CA, Fulton R, Fulton LL, et al.Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet. 2014; 10(7):1004462. [doi:10.1371/journal.pgen.1004462].
Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, et al.Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015; 518(7539):422–6. [doi:10.1038/nature13952].
Gawad C, Koh W, Quake SR. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. PNAS. 2014; 111(50):17947–52. [doi:10.1073/pnas.1420822111].
Yuan K, Sakoparnig T, Markowetz F, Beerenwinkel N. BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol. 2015; 16(1):36. [doi:10.1186/s13059-015-0592-6].
Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, et al.Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature. 2014; 512(7513):155–60. [doi:10.1038/nature1360].
Kim KI, Simon R. Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinform. 2014; 15. [doi:10.1186/1471-2105-15-27].
Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF, et al.Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia. 2014; 28(8):1705–15. [doi:10.1038/leu.2014.13].
Potter NE, Ermini L, Papaemmanuil E, Cazzaniga G, Vijayaraghavan G, Titley I, et al.Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res. 2013; 23(12):2115–25. [doi:10.1101/gr.159913.113].
Chowdhury SA, Shackney SE, Heselmeyer-Haddad K, Ried T, Schäffer AA, Schwartz R. Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLoS Comput Biol. 2014; 10(7):1003740. [doi:10.1371/journal.pcbi.1003740].
Markowetz F, Bloch J, Spang R. Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics. 2005; 21(21):4026–32. [doi:10.1093/bioinformatics/bti662].
Markowetz F, Kostka D, Troyanskaya OG, Spang R. Nested effects models for high-dimensional phenotyping screens. Bioinformatics. 2007; 23(13):305–12. [doi:10.1093/bioinformatics/btm178].
Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969; 61(4):893.
Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, Markowetz F. Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput Biol. 2014; 4:1003535. doi:10.1371/journal.pcbi.1003535.
Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015; 33(3):285–9. [doi:10.1038/nbt.3129].
Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al.G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015; 12(6):519–22. [doi:10.1038/nmeth.3370].
Sadeh MJ, Moffa G, Spang R. Considering unknown unknowns: reconstruction of nonconfoundable causal relations in biological networks. J Comput Biol. 2013; 20(11):920–32. [doi:10.1089/cmb.2013.0119].
Jeffreys H. Theory of Probability, 3rd ed. Oxford: Oxford University Press; 1998.
Kass RE, Raftery AE. Bayes factors. JASA. 1995; 90(430):773–95. [doi:10.1080/01621459.1995.10476572].
Zeller C, Frohlich H, Tresch A. A Bayesian network view on nested effects models. EURASIP J Bioinform Syst Biol. 2009; 1:195272. [doi:10.1155/2009/195272].
Rosenberg A, Hirschberg J. V-measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic: Association for Computational Linguistics: 2007. p. 410–20.
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2015. R Foundation for Statistical Computing. https://www.R-project.org.
OncoNEM Software. https://bitbucket.org/edith_ross/onconem.
NCBI Sequence Read Archive. http://www.ncbi.nlm.nih.gov/sra.