An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems

Applied Mathematics and Computation - Tập 219 - Trang 9652-9669 - 2013
George Mavrotas1, Kostas Florios1
1Laboratory of Industrial and Energy Economics, School of Chemical Engineering, National Technical University of Athens, Zographou Campus, Athens 15780, Greece

Tài liệu tham khảo

Steuer, 1986

Hwang, 1979, 164

Mavrotas, 2009, Effective implementation of the ε-constraint method in multi-objective mathematical programming problems, Appl. Math. Comput., 213, 455, 10.1016/j.amc.2009.03.037

Ehrgott, 2002, Constructing robust crew schedules with bicriteria optimization, J. Multi-Criteria Decis. Anal., 11, 139, 10.1002/mcda.321

Coello Coello, 2002

Deb, 2001

Bitran, 1979, Theory and algorithms for linear multiple objective programs with zero-one variables, Math. Program., 17, 362, 10.1007/BF01588256

Klein, 1982, An algorithm for the multiple objective integer linear programming problem, Eur. J. Oper. Res., 9, 378, 10.1016/0377-2217(82)90182-5

Sourd, 2008, A multiobjective branch-and-bound framework: application to the biobjective spanning tree problem, Inf. J. Comput., 20, 472, 10.1287/ijoc.1070.0260

Haimes, 1971, On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Trans. Syst. Man Cybern., 1, 296, 10.1109/TSMC.1971.4308298

Sylva, 2007, A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs, Eur. J. Oper. Res., 180, 1011, 10.1016/j.ejor.2006.02.049

B. Lokman, Approaches for multi-objective combinatorial optimization problems, MSc Thesis, Middle East Technical University, Ankara, 2007.

Koksalan, 2009, Approximating the nondominated frontiers of multi-objective combinatorial optimization problems, Nav. Res. Logist., 56, 191, 10.1002/nav.20336

Teghem, 1986, A survey of techniques for finding efficient solutions to multi-objective integer linear programming, Asia-Pac. J. Oper. Res., 3, 95

Ulungu, 1994, Multi-objective combinatorial optimization problems: a survey, J. Multi-Criteria Decis. Anal., 3, 83, 10.1002/mcda.4020030204

Zitzler, 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach, IEEE Trans. Evol. Comput., 3, 257, 10.1109/4235.797969

Klamroth, 2000, Dynamic programming approaches to the multiple criteria knapsack problem, Nav. Res. Logist., 47, 57, 10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4

Erlebach, 2002, Approximating multiobjective knapsack problems, Manage. Sci., 48, 1603, 10.1287/mnsc.48.12.1603.445

Shah, 2011, Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems, Eur. J. Oper. Res., 211, 466, 10.1016/j.ejor.2011.01.030

Lust, 2012, The multiobjective multidimensional knapsack problem: a survey and a new approach, Int. Trans. Oper. Res., 19, 495, 10.1111/j.1475-3995.2011.00840.x

Nemhauser, 1999

Delorme, 2010, Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem, Eur. J. Oper. Res., 204, 206, 10.1016/j.ejor.2009.10.014

Tricoire, 2012, Multi-directional local search, Comput. Oper. Res., 39, 3089, 10.1016/j.cor.2012.03.010

Isermann, 1987, Computational experience concerning payoff tables and minimum criterion values over the efficient set, Eur. J. Oper. Res., 33, 91, 10.1016/0377-2217(88)90257-3

Dessouky, 1986, Estimates of the mínimum nondominated criterion values in multiple criteria decisión making, Eng. Costs Prod. Econ., 10, 95, 10.1016/0167-188X(86)90030-3

Metev, 2003, A method for nadir point estimation in MOLP problems, Cyberne. Inf. Technol., 3, 15

Alves, 2009, An exact method for computing the nadir values in multiple objective linear programming, Eur. J. Oper. Res., 198, 637, 10.1016/j.ejor.2008.10.003

Jorge, 2009, An algorithm for optimizing a linear function over an integer efficient set, Eur. J. Oper. Res., 195, 98, 10.1016/j.ejor.2008.02.005

Brooke, 1998

Zitzler, 2002, SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization, 19

Papadimitriou, 1998

F. Degoutin, Problemes bi-objectifs en optimization combinatoire et capacite d’infrastructures ferroviaires, Master Thesis, Universite de Valenciennes et du Hainaut Cambresis, Valenciennes, France, 2002 (in French).

Delorme, 2003, Résolution approchée du problème de set packing bi-objectifs, 74

S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, The PISA Homepage, 2003. Available online at http://www.tik.ee.ethz.ch/pisa.