Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms

European Journal of Operational Research - Tập 203 - Trang 14-21 - 2010
Kostas Florios1, George Mavrotas1, Danae Diakoulaki1
1Laboratory of Industrial and Energy Economics, National Technical University of Athens, Zographou Campus, 15780 Athens, Greece

Tài liệu tham khảo

Alves, 2007, MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem, Computers and Operations Research, 34, 3458, 10.1016/j.cor.2006.02.008 Alves, 2007, A review of interactive methods for multiobjective integer and mixed-integer programming, European Journal of Operational Research, 180, 99, 10.1016/j.ejor.2006.02.033 Bazgan, 2009, Solving efficiently the 0–1 multi-objective knapsack problem, Computers and Operations Research, 36, 260, 10.1016/j.cor.2007.09.009 Bazgan, 2009, Implementing an efficient fptas for the 0–1 multi-objective knapsack problem, European Journal of Operational Research, 198, 47, 10.1016/j.ejor.2008.07.047 Bleuler, 2003, PISA – A platform and programming language independent interface for search algorithms, 494 Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E., 2003b. The PISA Homepage. <http://www.tik.ee.ethz.ch/pisa>. Captivo, 2003, Solving bicriteria 0–1 knapsack problems using a labeling algorithm, Computers and Operations Research, 30, 1865, 10.1016/S0305-0548(02)00112-0 Coello Coello, 2002 Deb, 2001 Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 182, 10.1109/4235.996017 Dongarra, J.J., 2008. Performance of various computers using standard linear equations software. Linpack Benchmark Report, University of Tennessee Computer Science Technical Report, CS-89-85. Ehrgott, 2006, A discussion of scalarization techniques for multiple objective integer programming, Annals of Operational Research, 147, 343, 10.1007/s10479-006-0074-z Erlebach, 2002, Approximating multiobjective knapsack problems, Management Science, 48, 1603, 10.1287/mnsc.48.12.1603.445 Gandibleux, 2000, Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case, Journal of Heuristics, 6, 361, 10.1023/A:1009682532542 Gomes da Silva, 2004, A scatter search method for the bi-criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation, Journal of Mathematical Modelling and Algorithms, 3, 183, 10.1023/B:JMMA.0000038617.09620.02 Gomes da Silva, 2006, A scatter search method for bi-criteria {0,1} knapsack problems, European Journal of Operational Research, 169, 373, 10.1016/j.ejor.2004.08.005 Gomes da Silva, 2007, Integrating partial optimization with scatter search for solving bi-criteria {0,1} knapsack problems, European Journal of Operational Research, 177, 1656, 10.1016/j.ejor.2005.10.013 Gomes da Silva, 2007, Core problems in bi-criteria {0,1}-knapsack problems, Computers and Operations Research, 35, 2292, 10.1016/j.cor.2006.11.001 Jaszkiewicz, 2002, On the performance of multiple-objective genetic local search on the 0/1 knapsack problem – A comparative experiment, IEEE Transactions on Evolutionary Computation, 6, 402, 10.1109/TEVC.2002.802873 Jaszkiewicz, 2004, On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study, European Journal of Operational Research, 158, 418, 10.1016/j.ejor.2003.06.015 Khare, 2003, Performance scaling of multi-objective evolutionary algorithms, vol. 2632, 376 Klamroth, 2000, Dynamic programming approaches to the multiple criteria knapsack problem, Naval Research Logistics, 47, 57, 10.1002/(SICI)1520-6750(200002)47:1<57::AID-NAV4>3.0.CO;2-4 Kumar, 2006, Analysis of a multiobjective evolutionary algorithm on the 0–1 knapsack problem, Theoretical Computer Science, 358, 104, 10.1016/j.tcs.2006.03.007 Land, 1960, An automatic method of solving discrete programming problems, Econometrica, 28, 497, 10.2307/1910129 Laumanns, M., Thiele, L., Zitzler, E., 2005. An adaptive scheme to generate the Pareto front based on the epsilon-constraint method. In: Branke, J., Deb, K., Miettinen, K., Steuer, R. (Eds.), Practical Approaches to Multi-Objective Optimization, Dagstuhl Seminar Proceedings, vol. 04461. URN: urn:nbn:de:0030-drops-2465, URL: http://drops.dagstuhl.de/opus/volltexte/2005/246. Laumanns, 2006, An efficient, adaptive parameter variation scheme for Metaheuristics based on the epsilon-constraint method, European Journal of Operational Research, 169, 932, 10.1016/j.ejor.2004.08.029 Li, 2004, Hybrid estimation of distribution algorithm for multiobjective knapsack problem, vol. 3004, 145 López-Ibáñez, 2006, Hybrid population-based algorithms for the bi-objective quadratic assignment problem, Journal of Mathematical Modelling and Algorithms, 5, 111, 10.1007/s10852-005-9034-x Martello, 1990 Mavrotas, 1998, A branch and bound algorithm for mixed zero-one multiple objective linear programming, European Journal of Operational Research, 107, 530, 10.1016/S0377-2217(97)00077-5 Mavrotas, 2005, Multi-criteria branch and bound: A vector maximization algorithm for mixed 0–1 multiple objective linear programming, Applied Mathematics and Computation, 171, 53, 10.1016/j.amc.2005.01.038 Nemhauser, 1999 Shukla, 2007, On finding multiple pareto-optimal solutions using classical and evolutionary generating methods, European Journal of Operational Research, 181, 1630, 10.1016/j.ejor.2006.08.002 Teghem, 2000, An interactive heuristic method for multi-objective combinatorial optimization, Computers and Operations Research, 27, 621, 10.1016/S0305-0548(99)00109-4 Visée, 1998, Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem, Journal of Global Optimization, 12, 139, 10.1023/A:1008258310679 Zhang, 2004, Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic, European Journal of Operational Research, 159, 545, 10.1016/S0377-2217(03)00420-X Zitzler, E., 1999. Evolutionary algorithms for multiobjective optimization: methods and applications. PhD Thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. Zitzler, 1999, Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach, IEEE Transactions on Evolutionary Computation, 3, 257, 10.1109/4235.797969 Zitzler, 2002, SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization, 19 Zitzler, 2004, A tutorial on evolutionary multiobjective optimization, vol. 535, 3